IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v137y2015icp1-11.html
   My bibliography  Save this article

Optimizing ration formulation as a strategy for greenhouse gas mitigation in intensive dairy production systems

Author

Listed:
  • Hawkins, James
  • Weersink, Alfons
  • Wagner-Riddle, Claudia
  • Fox, Glenn

Abstract

The study determines the extent to which ration selection can reduce GHG emissions in intensive dairy production systems. Replacing corn silage with alfalfa hay as the primary roughage component of dairy rations can lead to significant declines in GHG emissions from milk production in Ontario. Due to the higher soil organic matter of perennial forages, this change leads to the capture and storage of C in farm soils. Furthermore, alfalfa production requires less farm fieldwork and chemical inputs than corn which leads to a decline in emissions from energy consumption. The results suggest that feeding decisions have important implications for GHG emissions from intensive dairy production due to the wide variation in emissions for alternative crops that can be used in the ration. This is a notable finding, as much of the work on cost effective GHG mitigation in the dairy sector focuses on how this decision impacts enteric CH4. While our model estimates a decline in enteric CH4 resulting from the change in rations, this decline makes up only a small fraction of the total emission reductions. The ration decisions that lead to initial reductions in GHGs involve a small reduction in net farm returns but reductions beyond 5% impose a marginal abatement cost of about $550 Mg-1 CO2eq. Thus, reducing emissions by this amount through a carbon tax or market would not occur under current C prices suggesting that while intensive dairy production systems could contribute to policy efforts to reduce GHG emissions largely through cropping decisions, there may be more cost effective mitigation potential in other sectors.

Suggested Citation

  • Hawkins, James & Weersink, Alfons & Wagner-Riddle, Claudia & Fox, Glenn, 2015. "Optimizing ration formulation as a strategy for greenhouse gas mitigation in intensive dairy production systems," Agricultural Systems, Elsevier, vol. 137(C), pages 1-11.
  • Handle: RePEc:eee:agisys:v:137:y:2015:i:c:p:1-11
    DOI: 10.1016/j.agsy.2015.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X15000414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2015.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Verge, X.P.C. & Dyer, J.A. & Desjardins, R.L. & Worth, D., 2007. "Greenhouse gas emissions from the Canadian dairy industry in 2001," Agricultural Systems, Elsevier, vol. 94(3), pages 683-693, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krimly, Tatjana & Angenendt, Elisabeth & Bahrs, Enno & Dabbert, Stephan, 2016. "Global warming potential and abatement costs of different peatland management options: A case study for the Pre-alpine Hill and Moorland in Germany," Agricultural Systems, Elsevier, vol. 145(C), pages 1-12.
    2. Tzemi, Domna & Breen, James, 2019. "Reducing greenhouse gas emissions through the use of urease inhibitors: A farm level analysis," Ecological Modelling, Elsevier, vol. 394(C), pages 18-26.
    3. Kocjančič, Tina & Debeljak, Marko & Žgajnar, Jaka & Juvančič, Luka, 2018. "Incorporation of emergy into multiple-criteria decision analysis for sustainable and resilient structure of dairy farms in Slovenia," Agricultural Systems, Elsevier, vol. 164(C), pages 71-83.
    4. Kapica, Jacek & Pawlak, Halina & Ścibisz, Marek, 2015. "Carbon dioxide emission reduction by heating poultry houses from renewable energy sources in Central Europe," Agricultural Systems, Elsevier, vol. 139(C), pages 238-249.
    5. Thivierge, Marie-Noëlle & Jégo, Guillaume & Bélanger, Gilles & Chantigny, Martin H. & Rotz, C. Alan & Charbonneau, Édith & Baron, Vern S. & Qian, Budong, 2017. "Projected impact of future climate conditions on the agronomic and environmental performance of Canadian dairy farms," Agricultural Systems, Elsevier, vol. 157(C), pages 241-257.
    6. Letort, Elodie & Dupraz, P, 2023. "Animal feed as a lever to reduce methane emissions: a micro-econometric approach applied to French dairy farms," Working Papers 338908, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belflower, Jeff B. & Bernard, John K. & Gattie, David K. & Hancock, Dennis W. & Risse, Lawrence M. & Alan Rotz, C., 2012. "A case study of the potential environmental impacts of different dairy production systems in Georgia," Agricultural Systems, Elsevier, vol. 108(C), pages 84-93.
    2. Raymond L. Desjardins & Devon E. Worth & Xavier P. C. Vergé & Dominique Maxime & Jim Dyer & Darrel Cerkowniak, 2012. "Carbon Footprint of Beef Cattle," Sustainability, MDPI, vol. 4(12), pages 1-23, December.
    3. Lengers, Bernd & Britz, Wolfgang & Holm-Müller, Karin, 2013. "Trade-off of feasibility against accuracy and cost efficiency in choosing indicators for the abatement of GHG-emissions in dairy farming," Discussion Papers 162877, University of Bonn, Institute for Food and Resource Economics.
    4. Thivierge, Marie-Noëlle & Jégo, Guillaume & Bélanger, Gilles & Chantigny, Martin H. & Rotz, C. Alan & Charbonneau, Édith & Baron, Vern S. & Qian, Budong, 2017. "Projected impact of future climate conditions on the agronomic and environmental performance of Canadian dairy farms," Agricultural Systems, Elsevier, vol. 157(C), pages 241-257.
    5. Nijdam, Durk & Rood, Trudy & Westhoek, Henk, 2012. "The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes," Food Policy, Elsevier, vol. 37(6), pages 760-770.
    6. Kim, Daesoo & Stoddart, Nick & Rotz, C. Alan & Veltman, Karin & Chase, Larry & Cooper, Joyce & Ingraham, Pete & Izaurralde, R. César & Jones, Curtis D. & Gaillard, Richard & Aguirre-Villegas, Horacio , 2019. "Analysis of beneficial management practices to mitigate environmental impacts in dairy production systems around the Great Lakes," Agricultural Systems, Elsevier, vol. 176(C).
    7. Guyader, Jessie & Little, Shannan & Kröbel, Roland & Benchaar, Chaouki & Beauchemin, Karen A., 2017. "Comparison of greenhouse gas emissions from corn- and barley-based dairy production systems in Eastern Canada," Agricultural Systems, Elsevier, vol. 152(C), pages 38-46.
    8. Alvarez-Hess, Pablo S. & Little, Shannan M. & Moate, Peter J. & Jacobs, Joe L. & Beauchemin, Karen A. & Eckard, Richard J., 2019. "A partial life cycle assessment of the greenhouse gas mitigation potential of feeding 3-nitrooxypropanol and nitrate to cattle," Agricultural Systems, Elsevier, vol. 169(C), pages 14-23.
    9. Le, Stephanie & Jeffrey, Scott R. & An, Henry, 2017. "Greenhouse gas emissions and productive efficiency in Alberta dairy production: What are the trade-offs?," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258487, Agricultural and Applied Economics Association.
    10. Simon Briner & Michael Hartmann & Robert Finger & Bernard Lehmann, 2012. "Greenhouse gas mitigation and offset options for suckler cow farms: an economic comparison for the Swiss case," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(4), pages 337-355, April.
    11. Dyer, J.A. & Kulshreshtha, S.N. & McConkey, B.G. & Desjardins, R.L., 2010. "An assessment of fossil fuel energy use and CO2 emissions from farm field operations using a regional level crop and land use database for Canada," Energy, Elsevier, vol. 35(5), pages 2261-2269.
    12. Vergé, X.P.C. & Dyer, J.A. & Desjardins, R.L. & Worth, D., 2008. "Greenhouse gas emissions from the Canadian beef industry," Agricultural Systems, Elsevier, vol. 98(2), pages 126-134, September.
    13. James A. Dyer & Raymond L. Desjardins & Devon E. Worth & Xavier P.C. Vergé, 2020. "Potential Role for Consumers to Reduce Canadian Agricultural GHG Emissions by Diversifying Animal Protein Sources," Sustainability, MDPI, vol. 12(13), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:137:y:2015:i:c:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.