IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v104y2011i4p297-306.html
   My bibliography  Save this article

Developing environmental principles, criteria, indicators and norms for potato production in South Africa through field surveys and modelling

Author

Listed:
  • Franke, A.C.
  • Steyn, J.M.
  • Ranger, K.S.
  • Haverkort, A.J.

Abstract

The sustainability of agricultural production is linked to the environment from which it draws its resources. Potato production in the Sandveld in the South African Western Cape occurs in the Cape Floral Kingdom: a vulnerable and globally significant biodiversity hotspot. A scientific approach defining and monitoring sustainability criteria and indicators is required to improve the sustainability of potato production in such a sensitive area. In this paper we propose principles related to the ecological impact of potato production (nature preservation, water preservation and the minimization of chemical and carbon-dioxide emissions) and their derived criteria related to land clearing, irrigation, emissions, and others. Next we defined calculable and measurable indicators of the efficiency with which resources are used, such as proportion of land cleared, water use by the crop, amount of biocides used, the embodied energy of biocides, and the energy needed for farming operations versus the potato yields obtained. In-depth interviews were held with 14 farmers representing 20% of the total potato production area to obtain the current values of these indicators. These were compared to model outcomes of two main sustainability indicators: land and water use efficiency. The land use efficiency varied least between growers, from (36 to 58 Mg (tonnes) ha-1), water use efficiency returned values between 3 and 9 g potato l-1 water, while chemical fertilizer phosphorus use efficiency varied most at 98 and 995 g potato g-1 P applied. Model outcomes confirmed some of the trends revealed by the survey, e.g. growing potatoes in winter and growing them with less than optimal water offers possibilities to double water use efficiency. Ways to derive indicator threshold norms are proposed based on the knowledge of physical and biological processes determining resource availability, the observed variation among farmers and the model outcomes. Knowing indicator values, their range and the means to improve resource use efficiency will aid in establishing sustainability norms by providing a quantitative approach to any environmental certification scheme that wishes to licence the delivery of potatoes from the Sandveld.

Suggested Citation

  • Franke, A.C. & Steyn, J.M. & Ranger, K.S. & Haverkort, A.J., 2011. "Developing environmental principles, criteria, indicators and norms for potato production in South Africa through field surveys and modelling," Agricultural Systems, Elsevier, vol. 104(4), pages 297-306, April.
  • Handle: RePEc:eee:agisys:v:104:y:2011:i:4:p:297-306
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(10)00158-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    2. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Pritpal & Sandhu, Amarjeet Singh, 2023. "Energy budgeting and economics of potato (Solanum tuberosum L.) cultivation under different sowing methods in north-western India," Energy, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thennakoon, Jayanthi & Findlay, Christopher & Huang, Jikun & Wang, Jinxia, 2020. "Management adaptation to flood in Guangdong Province in China: Do property rights Matter?," World Development, Elsevier, vol. 127(C).
    2. Laxmi D. Bhatta & Sunita Chaudhary & Anju Pandit & Himlal Baral & Partha J. Das & Nigel E. Stork, 2016. "Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India," Land, MDPI, vol. 5(2), pages 1-14, June.
    3. Giuseppe Maggio & Marina Mastrorillo & Nicholas J. Sitko, 2022. "Adapting to High Temperatures: Effect of Farm Practices and Their Adoption Duration on Total Value of Crop Production in Uganda," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 385-403, January.
    4. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    5. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    6. McLennan, D. & Sharma, R., 2012. "The Delivering Ecological Services Index (DESI)," Working papers 119, Rimisp Latin American Center for Rural Development.
    7. Seydou Zakari & Germaine Ibro & Bokar Moussa & Tahirou Abdoulaye, 2022. "Adaptation Strategies to Climate Change and Impacts on Household Income and Food Security: Evidence from Sahelian Region of Niger," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    8. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    9. Maeda, Eduardo Eiji & Clark, Barnaby J.F. & Pellikka, Petri & Siljander, Mika, 2010. "Modelling agricultural expansion in Kenya's Eastern Arc Mountains biodiversity hotspot," Agricultural Systems, Elsevier, vol. 103(9), pages 609-620, November.
    10. Jaiswal, Sreeja & Balietti, Anca & Schäffer, Daniel, 2023. "Environmental Protection and Labor Market Composition," Working Papers 0736, University of Heidelberg, Department of Economics.
    11. Kwasi, Frimpong & Oosthuizen, Jacque & Etten, Eddie Van, 2014. "The Extent of Heat on Health and Sustainable Farming in Ghana –Bawku East," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 3(3).
    12. Simon Tilleard & James Ford, 2016. "Adaptation readiness and adaptive capacity of transboundary river basins," Climatic Change, Springer, vol. 137(3), pages 575-591, August.
    13. Tanimonure, Victoria Adeyemi, 2021. "Impact of Climate Adaptation Strategies on the Net Farm Revenue of Underutilized Indigenous Vegetables’ (UIVs) Production in Southwest Nigeria," 2021 Conference, August 17-31, 2021, Virtual 315903, International Association of Agricultural Economists.
    14. Possenti, Silvia., 2012. "Rural development strategies as a path to decent work and reducing urban informal employment : the case of South Africa," ILO Working Papers 994790883402676, International Labour Organization.
    15. Sam Barrett, 2015. "Subnational Adaptation Finance Allocation: Comparing Decentralized and Devolved Political Institutions in Kenya," Global Environmental Politics, MIT Press, vol. 15(3), pages 118-139, August.
    16. Bishu, Kinfe & O'Reilly, Seamus & Lahiff, Edward & Steiner, Bodo, 2016. "Cattle farmers’ perceptions of risk and risk management strategies," MPRA Paper 74954, University Library of Munich, Germany.
    17. Lucia de Strasser, 2017. "Calling for Nexus Thinking in Africa’s Energy Planning," ESP: Energy Scenarios and Policy 263161, Fondazione Eni Enrico Mattei (FEEM).
    18. Samuel Asante Gyamerah & Philip Ngare & Dennis Ikpe, 2018. "Regime-Switching Temperature Dynamics Model for Weather Derivatives," International Journal of Stochastic Analysis, Hindawi, vol. 2018, pages 1-15, July.
    19. Elisa Barbour & Lara Kueppers, 2012. "Conservation and management of ecological systems in a changing California," Climatic Change, Springer, vol. 111(1), pages 135-163, March.
    20. Tyler M Harms & Kevin T Murphy & Xiaodan Lyu & Shane S Patterson & Karen E Kinkead & Stephen J Dinsmore & Paul W Frese, 2017. "Using landscape habitat associations to prioritize areas of conservation action for terrestrial birds," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:104:y:2011:i:4:p:297-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.