IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2019-02-42.html
   My bibliography  Save this article

Analysis of Energy Demand Scenarios in Ecuador: National Government Policy Perspectives and Global Trend to Reduce CO2 Emissions

Author

Listed:
  • Flavio Arroyo

    (Universidad de Valladolid, Spain.)

  • Luis Javier Miguel

    (Universidad de Valladolid, Spain.)

Abstract

The structure of Ecuador s energy matrix over the past 15 years has varied, but in general, the three dominant sources of energy in the country are: Oil, hydroelectricity and biomass. In recent years, hydro energy has had a great boost with the construction of important hydroelectric projects, which has allowed to achieve important generation of energy from renewable sources. A system dynamics model evaluates the scenarios of Ecuador s energy model. The analysis describes the relationship between dynamic factors, such as policies, energy dependence and demand. National governmental political scenarios and global trends mark the way forward in search of reduction of energy consumption, energy efficiency and CO2 emissions mitigation. The results forecast future scenarios and trends in the supply and demand of energy and CO2 emissions projected until 2030.

Suggested Citation

  • Flavio Arroyo & Luis Javier Miguel, 2019. "Analysis of Energy Demand Scenarios in Ecuador: National Government Policy Perspectives and Global Trend to Reduce CO2 Emissions," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 364-374.
  • Handle: RePEc:eco:journ2:2019-02-42
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/7132/4259
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/7132/4259
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ashish Rana & Tsuneyuki Morita, 2000. "Scenarios for greenhouse gas emission mitigation: a review of modeling of strategies and policies in integrated assessment models," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 3(2), pages 267-289, June.
    2. Li, Li & Chen, Changhong & Xie, Shichen & Huang, Cheng & Cheng, Zhen & Wang, Hongli & Wang, Yangjun & Huang, Haiying & Lu, Jun & Dhakal, Shobhakar, 2010. "Energy demand and carbon emissions under different development scenarios for Shanghai, China," Energy Policy, Elsevier, vol. 38(9), pages 4797-4807, September.
    3. Mondal, Md Alam Hossain & Bryan, Elizabeth & Ringler, Claudia & Mekonnen, Dawit & Rosegrant, Mark, 2018. "Ethiopian energy status and demand scenarios: Prospects to improve energy efficiency and mitigate GHG emissions," Energy, Elsevier, vol. 149(C), pages 161-172.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Flavio R. Arroyo M. & Luis J. Miguel, 2020. "The Role of Renewable Energies for the Sustainable Energy Governance and Environmental Policies for the Mitigation of Climate Change in Ecuador," Energies, MDPI, vol. 13(15), pages 1-18, July.
    2. Tzen-Ying Ling & Wei-Kai Hung & Chun-Tsu Lin & Michael Lu, 2020. "Dealing with Green Gentrification and Vertical Green-Related Urban Well-Being: A Contextual-Based Design Framework," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    3. Chiriboga, Gonzalo & Chamba, Rommel & Garcia, Andrés & Heredia-Fonseca, Roberto & Montero- Calderón, Carolina & Carvajal C, Ghem, 2023. "Useful energy is a meaningful approach to building the decarbonization: A case of study of the Ecuadorian transport sector," Transport Policy, Elsevier, vol. 132(C), pages 76-87.
    4. Flavio R. Arroyo M. & Luis J. Miguel, 2019. "The Trends of the Energy Intensity and CO 2 Emissions Related to Final Energy Consumption in Ecuador: Scenarios of National and Worldwide Strategies," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    5. Flavio R. Arroyo M. & Luis J. Miguel, 2020. "Low-Carbon Energy Governance: Scenarios to Accelerate the Change in the Energy Matrix in Ecuador," Energies, MDPI, vol. 13(18), pages 1-13, September.
    6. Yücenur, G. Nilay & Ipekçi, Ahmet, 2021. "SWARA/WASPAS methods for a marine current energy plant location selection problem," Renewable Energy, Elsevier, vol. 163(C), pages 1287-1298.
    7. Espinoza, Vicente Sebastian & Fontalvo, Javier & Martí-Herrero, Jaime & Miguel, Luis Javier & Mediavilla, Margarita, 2022. "Analysis of energy future pathways for Ecuador facing the prospects of oil availability using a system dynamics model. Is degrowth inevitable?," Energy, Elsevier, vol. 259(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gebrehiwot, Kiflom & Mondal, Md. Alam Hossain & Ringler, Claudia & Gebremeskel, Abiti Getaneh, 2019. "Optimization and cost-benefit assessment of hybrid power systems for off-grid rural electrification in Ethiopia," Energy, Elsevier, vol. 177(C), pages 234-246.
    2. Yu, Wei & Pagani, Roberto & Huang, Lei, 2012. "CO2 emission inventories for Chinese cities in highly urbanized areas compared with European cities," Energy Policy, Elsevier, vol. 47(C), pages 298-308.
    3. Jiabin Liu & Ji Han, 2017. "Does a Certain Rule Exist in the Long-Term Change of a City’s Livability? Evidence from New York, Tokyo, and Shanghai," Sustainability, MDPI, vol. 9(10), pages 1-15, September.
    4. Zhai, Yijie & Ma, Xiaotian & Gao, Feng & Zhang, Tianzuo & Hong, Jinglan & Zhang, Xu & Yuan, Xueliang & Li, Xiangzhi, 2020. "Is energy the key to pursuing clean air and water at the city level? A case study of Jinan City, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Li, Xue & Lin, Cong & Wang, Yang & Zhao, Lingying & Duan, Na & Wu, Xudong, 2015. "Analysis of rural household energy consumption and renewable energy systems in Zhangziying town of Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 184-193.
    6. Francesch-Huidobro, Maria, 2016. "Climate change and energy policies in Shanghai: A multilevel governance perspective," Applied Energy, Elsevier, vol. 164(C), pages 45-56.
    7. Shao, Shuai & Yang, Lili & Yu, Mingbo & Yu, Mingliang, 2011. "Estimation, characteristics, and determinants of energy-related industrial CO2 emissions in Shanghai (China), 1994-2009," Energy Policy, Elsevier, vol. 39(10), pages 6476-6494, October.
    8. Santika, Wayan G. & Anisuzzaman, M. & Simsek, Yeliz & Bahri, Parisa A. & Shafiullah, G.M. & Urmee, Tania, 2020. "Implications of the Sustainable Development Goals on national energy demand: The case of Indonesia," Energy, Elsevier, vol. 196(C).
    9. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    10. Xin Yang & Chunbo Ma & Anlu Zhang, 2016. "Decomposition of Net CO 2 Emission in the Wuhan Metropolitan Area of Central China," Sustainability, MDPI, vol. 8(8), pages 1-13, August.
    11. Qingqin Wang & Xiaofeng Sun & Ruonan Wang & Lining Zhou & Haizhu Zhou & Yanqiang Di & Yanyi Li & Qi Zhang, 2023. "Research on Urban Energy Sustainable Plan under the Background of Low-Carbon Development," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
    12. Tian, Lixin & Jin, Rulei, 2012. "Theoretical exploration of carbon emissions dynamic evolutionary system and evolutionary scenario analysis," Energy, Elsevier, vol. 40(1), pages 376-386.
    13. Hongfeng Zhang & Lu Huang & Yan Zhu & Hongyun Si & Xu He, 2021. "Does Low-Carbon City Construction Improve Total Factor Productivity? Evidence from a Quasi-Natural Experiment in China," IJERPH, MDPI, vol. 18(22), pages 1-21, November.
    14. Malin Song & Nan Wu & Kaiya Wu, 2014. "Energy Consumption and Energy Efficiency of the Transportation Sector in Shanghai," Sustainability, MDPI, vol. 6(2), pages 1-16, February.
    15. Wassie, Yibeltal T. & Rannestad, Meley M. & Adaramola, Muyiwa S., 2021. "Determinants of household energy choices in rural sub-Saharan Africa: An example from southern Ethiopia," Energy, Elsevier, vol. 221(C).
    16. Peng, Valerie & Slocum, Alexander, 2020. "Endemic Water and Storm Trash to energy via in-situ processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Feng, Y.Y. & Chen, S.Q. & Zhang, L.X., 2013. "System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China," Ecological Modelling, Elsevier, vol. 252(C), pages 44-52.
    18. Yusof, Ahmad & Raman, Maznah & Nopiah, Zulkifli, 2013. "Modeling of the Malaysian Crude Oil System," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 47(1), pages 125-130.
    19. Shahbaz, Muhammad & Loganathan, Nanthakumar & Sbia, Rashid & Afza, Talat, 2015. "The effect of urbanization, affluence and trade openness on energy consumption: A time series analysis in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 683-693.
    20. Xiao, Huijuan & Duan, Zhiyuan & Zhou, Ya & Zhang, Ning & Shan, Yuli & Lin, Xiyan & Liu, Guosheng, 2019. "CO2 emission patterns in shrinking and growing cities: A case study of Northeast China and the Yangtze River Delta," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    More about this item

    Keywords

    CO2 ; Emissions; energy demand; Energy Policies;
    All these keywords.

    JEL classification:

    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • O10 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2019-02-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.