Advanced Search
MyIDEAS: Login to save this article or follow this journal

Every Choice Function Is Backwards‐Induction Rationalizable

Contents:

Author Info

  • Walter Bossert
  • Yves Sprumont

Abstract

A choice function is backwards-induction rationalizable if there exists a finite perfect-information extensive-form game such that, for each subset of alternatives, the backwards-induction outcome of the restriction of the game to that subset of alternatives coincides with the choice from that subset. We prove that every choice function is backwards-induction rationalizable.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.3982/
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Econometric Society in its journal Econometrica.

Volume (Year): 81 (2013)
Issue (Month): 6 (November)
Pages: 2521-2534

as in new window
Handle: RePEc:ecm:emetrp:v:81:y:2013:i:6:p:2521-2534

Contact details of provider:
Phone: 1 212 998 3820
Fax: 1 212 995 4487
Email:
Web page: http://www.econometricsociety.org/
More information through EDIRC

Order Information:
Email:
Web: http://www.blackwellpublishing.com/memb.asp?ref=0012-9682

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Indra Ray & Susan Snyder, 2003. "Observable Implications of Nash and Subgame-Perfect Behavior in Extensive Games," Working Papers 2003-02, Brown University, Department of Economics.
  2. Mantel, Rolf R., 1974. "On the characterization of aggregate excess demand," Journal of Economic Theory, Elsevier, vol. 7(3), pages 348-353, March.
  3. Lee, SangMok, 2012. "The testable implications of zero-sum games," Journal of Mathematical Economics, Elsevier, vol. 48(1), pages 39-46.
  4. Indrajit Ray & Lin Zhou, . "Game Theory Via Revealed Preferences," Discussion Papers 00/15, Department of Economics, University of York.
  5. Xu, Yongsheng & Zhou, Lin, 2007. "Rationalizability of choice functions by game trees," Journal of Economic Theory, Elsevier, vol. 134(1), pages 548-556, May.
  6. Sonnenschein, Hugo, 1973. "Do Walras' identity and continuity characterize the class of community excess demand functions?," Journal of Economic Theory, Elsevier, vol. 6(4), pages 345-354, August.
  7. Sprumont, Yves, 2000. "On the Testable Implications of Collective Choice Theories," Journal of Economic Theory, Elsevier, vol. 93(2), pages 205-232, August.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Indra Ray & Susan Snyder, 2003. "Observable Implications of Nash and Subgame-Perfect Behavior in Extensive Games," Working Papers 2003-02, Brown University, Department of Economics.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:81:y:2013:i:6:p:2521-2534. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.