IDEAS home Printed from https://ideas.repec.org/a/col/000438/012756.html
   My bibliography  Save this article

Pronósticos para una economía menos volátil: el caso colombiano

Author

Listed:
  • Santiago Cajiao Raigosa
  • Luis Fernando Melo Velandia
  • Daniel Parra Amado

Abstract

Este trabajo evalúa si las transformaciones de potencia (Box-Cox y en particular logarítmica) de series de tiempo mejoran la precisión de los pronósticos de modelos ARIMA ajustados a variables económicas de Colombia en dos periodos diferentes: 1980-1995 y 2002-2012. Se compara la habilidad predictiva de series en nivel y series transformadas a través de un experimento fuera de muestra mediante el uso de la prueba de habilidad predictiva incondicional de Giacomini y White (2006). Se encuentra que los pronósticos de las series transformadas, en general, se desempenan mejor para el periodo 1980-1995, cuando la economía colombiana fue relativamente más volátil que durante el periodo 2002-2012. Para este último tramo de la muestra, los resultados son mixtos y para algunas series se sugiere mantenerlas en niveles; es decir, sin utilizar transformaciones de potencia.

Suggested Citation

  • Santiago Cajiao Raigosa & Luis Fernando Melo Velandia & Daniel Parra Amado, 2014. "Pronósticos para una economía menos volátil: el caso colombiano," Coyuntura Económica, Fedesarrollo, December.
  • Handle: RePEc:col:000438:012756
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/11445/1925
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Juan Pablo Zárate Perdomo & Adolfo León Cobo & José Eduardo Gómez-González, 2012. "Lecciones de las crisis financieras recientes para el diseño e implementación de las políticas monetarias," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 30(69), pages 258-293, December.
    2. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    3. Luis Fernando Melo & Héctor Núñez, 2004. "Combinación de Pronósticos de la Inflación en Presencia de cambios Estructurales," Borradores de Economia 286, Banco de la Republica de Colombia.
    4. Jonathan Gillard, 2012. "A generalised Box--Cox transformation for the parametric estimation of clinical reference intervals," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(10), pages 2231-2245, June.
    5. Santiago Cajiao Raigosa & Luis Fernando Melo Velandia & Daniel Parra Amado, 2014. "Pronósticos para una economía menos volátil: el caso colombiano," Coyuntura Económica, Fedesarrollo, December.
    6. M. H. Lee & H. J. Sadaei & Suhartono, 2013. "Improving TAIEX forecasting using fuzzy time series with Box--Cox power transformation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(11), pages 2407-2422, November.
    7. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    8. Luca Benati, 2003. "Evolving Post-World War II U.K. Economic Performance," Computing in Economics and Finance 2003 171, Society for Computational Economics.
    9. Saikkonen, Pentti & Lütkepohl, Helmut, 2002. "Testing For A Unit Root In A Time Series With A Level Shift At Unknown Time," Econometric Theory, Cambridge University Press, vol. 18(2), pages 313-348, April.
    10. Luetkepohl Helmut & Xu Fang, 2011. "Forecasting Annual Inflation with Seasonal Monthly Data: Using Levels versus Logs of the Underlying Price Index," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-23, February.
    11. Johannes Mayr & Dirk Ulbricht, 2007. "Log versus level in VAR forecasting: 16 Million empirical answers - expect the unexpected," ifo Working Paper Series 42, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    12. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    13. Seaks, Terry G & Layson, Stephen K, 1983. "Box-Cox Estimation with Standard Econometric Problems," The Review of Economics and Statistics, MIT Press, vol. 65(1), pages 160-164, February.
    14. Proietti, Tommaso & Lütkepohl, Helmut, 2013. "Does the Box–Cox transformation help in forecasting macroeconomic time series?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 88-99.
    15. Canova, Fabio & Hansen, Bruce E, 1995. "Are Seasonal Patterns Constant over Time? A Test for Seasonal Stability," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 237-252, July.
    16. Spitzer, John J, 1982. "A Primer on Box-Cox Estimation," The Review of Economics and Statistics, MIT Press, vol. 64(2), pages 307-313, May.
    17. Proietti, Tommaso & Riani, Marco, 2007. "Transformations and Seasonal Adjustment: Analytic Solutions and Case Studies," MPRA Paper 7862, University Library of Munich, Germany.
    18. Todd E. Clark & Michael W. McCracken, 2010. "Testing for unconditional predictive ability," Working Papers 2010-031, Federal Reserve Bank of St. Louis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santiago Cajiao Raigosa & Luis Fernando Melo Velandia & Daniel Parra Amado, 2014. "Pronósticos para una economía menos volátil: el caso colombiano," Coyuntura Económica, Fedesarrollo, December.
    2. Davinson Stev Abril Salcedo & Luis Fernando Melo Velandia & Daniel Parra Amado, 2015. "Heterogeneidad de los Índices de Producción Sectoriales de la Industria Colombiana," Borradores de Economia 12973, Banco de la Republica.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uwe Hassler & Paulo M. M. Rodrigues, 2004. "Seasonal Unit Root Tests Under Structural Breaks," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 33-53, January.
    2. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    3. Garcia-Hiernaux, Alfredo & Gonzalez-Perez, Maria T. & Guerrero, David E., 2023. "Eurozone prices: A tale of convergence and divergence," Economic Modelling, Elsevier, vol. 126(C).
    4. Changli He & Rickard Sandberg, 2006. "Dickey–Fuller Type of Tests against Nonlinear Dynamic Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 835-861, December.
    5. Matei Demetrescu & Christoph Hanck & Robinson Kruse‐Becher, 2022. "Robust inference under time‐varying volatility: A real‐time evaluation of professional forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1010-1030, August.
    6. Nonejad, Nima, 2022. "Predicting equity premium out-of-sample by conditioning on newspaper-based uncertainty measures: A comparative study," International Review of Financial Analysis, Elsevier, vol. 83(C).
    7. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    8. Christiane Baumeister & Lutz Kilian & Thomas K. Lee, 2017. "Inside the Crystal Ball: New Approaches to Predicting the Gasoline Price at the Pump," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 275-295, March.
    9. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    10. Duncan, Roberto & Martínez-García, Enrique, 2019. "New perspectives on forecasting inflation in emerging market economies: An empirical assessment," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1008-1031.
    11. Cerqueira, Vinícius Dos Santos & Ribeiro, Márcio Bruno & Martinez, Thiago Sevilhano, 2014. "Propagação Assimétrica de Choques Monetários na Economia Brasileira: Evidências com base em um modelo vetorial não-linear de transição suave," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 68(1), April.
    12. Mayer, Walter J. & Liu, Feng & Dang, Xin, 2017. "Improving the power of the Diebold–Mariano–West test for least squares predictions," International Journal of Forecasting, Elsevier, vol. 33(3), pages 618-626.
    13. Alfredo García Hiernaux & David Esteban Guerrero Burbano, 2015. "Price-Level Convergence in the Eurozone," Documentos de Trabajo del ICAE 2015-05, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    14. Delle Monache, Davide & Petrella, Ivan, 2017. "Adaptive models and heavy tails with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
    15. Angela Capolongo & Claudia Pacella, 2021. "Forecasting inflation in the euro area: countries matter!," Empirical Economics, Springer, vol. 61(5), pages 2477-2499, November.
    16. Manzan, Sebastiano & Zerom, Dawit, 2013. "Are macroeconomic variables useful for forecasting the distribution of U.S. inflation?," International Journal of Forecasting, Elsevier, vol. 29(3), pages 469-478.
    17. Kapetanios, G. & Mitchell, J. & Price, S. & Fawcett, N., 2015. "Generalised density forecast combinations," Journal of Econometrics, Elsevier, vol. 188(1), pages 150-165.
    18. Héctor Manuel Záarte Solano & Angélica Rengifo Gómez, 2013. "Forecasting annual inflation with power transformations: the case of inflation targeting countries," Borradores de Economia 10462, Banco de la Republica.
    19. Theodore M. Crone & N. Neil K. Khettry & Loretta J. Mester & Jason A. Novak, 2013. "Core Measures of Inflation as Predictors of Total Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(2‐3), pages 505-519, March.
    20. Luca Benati, 2008. "The “Great Moderation” in the United Kingdom," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(1), pages 121-147, February.

    More about this item

    Keywords

    Transformación de Potencia; Transformación Logarítmica; Evaluación de Pronósticos;
    All these keywords.

    JEL classification:

    • I20 - Health, Education, and Welfare - - Education - - - General
    • I31 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - General Welfare, Well-Being
    • H53 - Public Economics - - National Government Expenditures and Related Policies - - - Government Expenditures and Welfare Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000438:012756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Patricia Monroy (email available below). General contact details of provider: https://edirc.repec.org/data/fedesco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.