Advanced Search
MyIDEAS: Login

Forecasting annual inflation with power transformations: the case of inflation targeting countries

Contents:

Author Info

  • Héctor Manuel Záarte Solano

    ()

  • Angélica Rengifo Gómez

    ()

Registered author(s):

    Abstract

    This paper investigates whether transforming the Consumer Price Index with a class of power transformations lead to an improvement of inflation forecasting accuracy. We use one of the prototypical models to forecast short run inflation which is known as the univariate time series ARIMA . This model is based on past inflation which is traditionally approximated by the difference of logarithms of the underlying consumer price index. The common practice of applying the logarithm could damage the forecast precision if this transformation does not stabilize the variance adequately. In this paper we investigate the benefits of incorporating these transformations using a sample of 28 countries that has adopted the inflation targeting framework. An appropriate transformation reduces problems with estimation, prediction and inference. The choice of the parameter is done by bayesian grounds.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.banrep.gov.co/docum/ftp/be_756.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by BANCO DE LA REPÚBLICA in its series BORRADORES DE ECONOMIA with number 010462.

    as in new window
    Length: 12
    Date of creation: 05 Feb 2013
    Date of revision:
    Handle: RePEc:col:000094:010462

    Contact details of provider:

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Hosoya, Yuzo & Terasaka, Takahiro, 2009. "Inference on transformed stationary time series," Journal of Econometrics, Elsevier, vol. 151(2), pages 129-139, August.
    2. Lütkepohl, Helmut & Proietti, Tommaso, 2011. "Does the Box-Cox transformation help in forecasting macroeconomic time series?," Working Papers 1 OMEWP, University of Sydney Business School, Discipline of Business Analytics.
    3. James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:col:000094:010462. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Norma Judith Paternina).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.