Advanced Search
MyIDEAS: Login to save this article or follow this journal

En busca de un modelo Benchmark univariado para predecir la tasa de desempleo


Author Info

  • Javier Contreras-Reyes


  • Byron Idrovo



En este trabajo se analiza la precisión y la estabilidad de las predicciones de la tasa de desempleo de Chile, obtenidas de una familia de modelos SARIMA, entre febrero de 1986 y febrero de 2010. Las proyecciones SARIMA son comparadas con las provenientes de modelos univariados, incluyendo los benchmarks predictivos. Simultáneamente, se ajustó un modelo ARFIMA (Autorregresive Fractionary Integrated Moving Average), debido a los signos de persistencia que muestra el indicador de desempleo en su comportamiento; sin embargo, a partir de los métodos de estimación de Reisen (1994), Geweke et al. (1983) y Whittle (1962) se obtuvieron parámetros de integración mayores que 0.5, lo que empíricamente sustenta el tratamiento de la tasa de desempleo como una serie no estacionaria. La evaluación de la capacidad predictiva de los modelos se centra en las proyecciones fuera de muestra de 1, 6 y 12 meses hacia adelante. Los resultados indican que el RECM fuera de muestra de las proyecciones SARIMA es menor que el de los métodos univariados considerados.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL:
Download Restriction: no

Bibliographic Info

Article provided by UN - RCE - CID in its journal REVISTA CUADERNOS DE ECONOMÍA.

Volume (Year): (2011)
Issue (Month): ()

as in new window
Handle: RePEc:col:000093:009216

Contact details of provider:

Related research

Keywords: tasa de desempleo; SARIMA; ARFIMA; benchmarks predictivos; Chile.;

Find related papers by JEL classification:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Hyllerberg, S. & Engle, R.F. & Granger, C.W.J. & Yoo, B.S., 1988. "Seasonal Integration And Cointegration," Papers 0-88-2, Pennsylvania State - Department of Economics.
  2. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
  3. Raphael Bergoeing & Felipe Morande, 2004. "Labor Market Distortions, Employment and Growth: The Recent Chilean Experience," Econometric Society 2004 Latin American Meetings 125, Econometric Society.
  4. James H. Stock & Mark W. Watson, 2001. "Forecasting output and inflation: the role of asset prices," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
  5. Rómulo Chumacero & Jorge Quiroz, 1996. "La Tasa Natural de Crecimiento de la Economía Chilena: 1985-1996," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 33(100), pages 453-472.
  6. Pablo Pincheira Brown & Álvaro García Marín, 2009. "Forecasting Inflation in Chile With an Accurate Benchmark," Working Papers Central Bank of Chile 514, Central Bank of Chile.
Full references (including those not matched with items on IDEAS)


Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Javier Contreras-Reyes & Wilfredo Palma, 2013. "Statistical analysis of autoregressive fractionally integrated moving average models in R," Computational Statistics, Springer, vol. 28(5), pages 2309-2331, October.
  2. Pablo Pincheira B., 2014. "Predictive Evaluation of Sectoral and Total Employment Based on Entrepreneurial Confidence Indicators," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 12(1), pages 66-87, April.


This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


Access and download statistics


When requesting a correction, please mention this item's handle: RePEc:col:000093:009216. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Vladimir Leonardo Celis Agudelo).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.