IDEAS home Printed from https://ideas.repec.org/a/caa/jnlswr/v9y2014i2id28-2013-swr.html
   My bibliography  Save this article

Generalized calibration of the Hargreaves equation for evapotranspiration under different climate conditions

Author

Listed:
  • Jignesh PATEL

    (Nirma University, Ahmedabad, India)

  • Himanshu PATEL

    (Nirma University, Ahmedabad, India)

  • Chetan BHATT

    (Vishwakarma Government Engineering College, Chandkheda, Ahmedabad, India)

Abstract

Accurate estimation of evapotranspiration (ETo) is a key factor in weather-based irrigation scheduling methods. To estimate ETo using the Hargreaves equation, just the data on the minimum and maximum temperature and solar radiation are required. However, this procedure cannot offer consistent accuracy for different climate conditions. To attain the accuracy, calibration of the equation constants (CHand EH) for different climate conditions have successfully been attempted by many researchers. Because these calibration procedures are lengthy and location-specific, there is a need of a generalized calibration method to make the Hargreaves equation more pertinent and effective. In this paper, fuzzy logic based calibration method for the Hargreaves equation is proposed and validated. The fuzzy inference system is developed to compute appropriate values of the constants CHand EH on the basis of past data on humidity and wind velocity of a selected location. The underlying relationship between weather conditions and the best values of the constants CHand EH are used to establish a fuzzy rule base. The performance of the method is checked at eight geographically different locations of India with diverse climate conditions. The Mean Absolute Error (MAE) in ETovalues estimated by the calibrated modified Hargreaves equation and the Penman-Monteith (PM) equation is in the range of 0.3220-1.0325. It is far more lower than if the error is calculated using the original Hargreaves equation. It confirms the correctness of the calibration method for different climate conditions.

Suggested Citation

  • Jignesh PATEL & Himanshu PATEL & Chetan BHATT, 2014. "Generalized calibration of the Hargreaves equation for evapotranspiration under different climate conditions," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 9(2), pages 83-89.
  • Handle: RePEc:caa:jnlswr:v:9:y:2014:i:2:id:28-2013-swr
    DOI: 10.17221/28/2013-SWR
    as

    Download full text from publisher

    File URL: http://swr.agriculturejournals.cz/doi/10.17221/28/2013-SWR.html
    Download Restriction: free of charge

    File URL: http://swr.agriculturejournals.cz/doi/10.17221/28/2013-SWR.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/28/2013-SWR?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Fraiture, Charlotte & Wichelns, Dennis, 2010. "Satisfying future water demands for agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 502-511, April.
    2. Fortes, P.S. & Platonov, A.E. & Pereira, L.S., 2005. "GISAREG--A GIS based irrigation scheduling simulation model to support improved water use," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 159-179, August.
    3. O.E. Mohawesh, 2011. "Evaluation of evapotranspiration models for estimating daily reference evapotranspiration in arid and semiarid environments," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 57(4), pages 145-152.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    2. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    3. Zhaohong Wu & Wenyuan Hua & Liangguo Luo & Katsuya Tanaka, 2022. "Technical Efficiency of Maize Production and Its Influencing Factors in the World’s Largest Groundwater Drop Funnel Area, China," Agriculture, MDPI, vol. 12(5), pages 1-14, April.
    4. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    5. Rinaudo, Jean-Daniel & Maton, Laure & Terrason, Isabelle & Chazot, Sébastien & Richard-Ferroudji, Audrey & Caballero, Yvan, 2013. "Combining scenario workshops with modeling to assess future irrigation water demands," Agricultural Water Management, Elsevier, vol. 130(C), pages 103-112.
    6. Piñeiro-Chousa, Juan & López-Cabarcos, M.Ángeles & Ribeiro-Soriano, Domingo, 2020. "Does investor attention influence water companies’ stock returns?," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    7. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    8. Tiffany L. Fess & James B. Kotcon & Vagner A. Benedito, 2011. "Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population," Sustainability, MDPI, vol. 3(10), pages 1-31, October.
    9. María Blanco & Benjamin Van Doorslaer & Wolfgang Britz & Heinz-Peter Witzke, 2012. "Exploring the feasibility of integrating water issues into the CAPRI model," JRC Research Reports JRC77058, Joint Research Centre.
    10. Mondol, Md Anarul Haque & Zhu, Xuan & Dunkerley, David & Henley, Benjamin J., 2022. "Changing occurrence of crop water surplus or deficit and the impact of irrigation: An analysis highlighting consequences for rice production in Bangladesh," Agricultural Water Management, Elsevier, vol. 269(C).
    11. Ignacio Lorite & Margarita García-Vila & María-Ascensión Carmona & Cristina Santos & María-Auxiliadora Soriano, 2012. "Assessment of the Irrigation Advisory Services’ Recommendations and Farmers’ Irrigation Management: A Case Study in Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2397-2419, June.
    12. Ruchie Pathak & Nicholas R. Magliocca, 2022. "Assessing the Representativeness of Irrigation Adoption Studies: A Meta-Study of Global Research," Agriculture, MDPI, vol. 12(12), pages 1-31, December.
    13. van Halsema, Gerardo E. & Vincent, Linden, 2012. "Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism," Agricultural Water Management, Elsevier, vol. 108(C), pages 9-15.
    14. Mukuve, Feriha Mugisha & Fenner, Richard A., 2015. "The influence of water, land, energy and soil-nutrient resource interactions on the food system in Uganda," Food Policy, Elsevier, vol. 51(C), pages 24-37.
    15. Marcos, Mathias & Sharifi, Hussain & Grattan, Stephen R. & Linquist, Bruce A., 2018. "Spatio-temporal salinity dynamics and yield response of rice in water-seeded rice fields," Agricultural Water Management, Elsevier, vol. 195(C), pages 37-46.
    16. Palazzo,Amanda & Valin,Hugo Jean Pierre & Batka,Miroslav & Havlík,Petr, 2019. "Investment Needs for Irrigation Infrastructure along Different Socioeconomic Pathways," Policy Research Working Paper Series 8744, The World Bank.
    17. Roberto Roson & Martina Sartori, 2013. "Trade-offs in water policy: System-wide implications of changing water availability and agricultural productivity in the Mediterranean economies by 2050," Working Papers 2013:21, Department of Economics, University of Venice "Ca' Foscari".
    18. Sidibe, Y. & Williams, T.O., 2018. "A comparative analysis of water pricing options on two large-scale irrigation schemes in West Africa," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276017, International Association of Agricultural Economists.
    19. Michiel van Dijk, 2012. "A review of global scenario exercises for food security analysis: Assumptions and results," FOODSECURE Working papers 2, LEI Wageningen UR.
    20. Ioannis Manikas & Balan Sundarakani & Foivos Anastasiadis & Beshir Ali, 2022. "A Framework for Food Security via Resilient Agri-Food Supply Chains: The Case of UAE," Sustainability, MDPI, vol. 14(10), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlswr:v:9:y:2014:i:2:id:28-2013-swr. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.