IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v70y2024i2id313-2023-pse.html
   My bibliography  Save this article

Effects of spring low-temperature stress on winter wheat seed-setting characteristics of spike

Author

Listed:
  • Xiang Chen

    (School of Agronomy, Anhui Agricultural University, Hefei, P.R. China)

  • lvzhou Liu

    (School of Agronomy, Anhui Agricultural University, Hefei, P.R. China)

  • Hongmei Cai

    (School of Agronomy, Anhui Agricultural University, Hefei, P.R. China)

  • Baoqiang Zheng

    (School of Agronomy, Anhui Agricultural University, Hefei, P.R. China)

  • Jincai Li

    (School of Agronomy, Anhui Agricultural University, Hefei, P.R. China
    Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing, P.R. China)

Abstract

Global climate change leads to frequent occurrence of low-temperature stress (LTS), which poses a serious threat to global food security. Here, environment-control phytotron experiments were conducted on cold-responsive cv. XM26 and cold-tolerant cv. YN19 during the anther differentiation period. Six LTS levels (4, 2, 0, -2, -4, -6 °C) and a control treatment (10 °C) were set to study the effects of different levels of LTS on wheat seed-setting characteristics and yield. LTS significantly decreased grain number per spike, 1 000-grain weight, and grain yield per plant (GYPP) of the two wheat cultivars. Each spike's grain number and weight distribution showed a quadratic curve, and the near-medium dominance of grain development was not affected by temperature. The grain number percentage and grain weight of wheat at different grain positions were G2 (2nd grain position) ≥ G1 (1st grain position) > G3 (3rd grain position) > G4 (4th grain position), in which G3 and G4 grain positions were more sensitive to LTS. In summary, LTS during the anther differentiation in wheat mainly led to a decrease in GYPP by significantly reducing the number and weight of inferior grains. Improving wheat cultivation measures and promoting the development of inferior grains are significant ways to prevent disasters and increase wheat quality and productivity in the future.

Suggested Citation

  • Xiang Chen & lvzhou Liu & Hongmei Cai & Baoqiang Zheng & Jincai Li, 2024. "Effects of spring low-temperature stress on winter wheat seed-setting characteristics of spike," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(2), pages 84-92.
  • Handle: RePEc:caa:jnlpse:v:70:y:2024:i:2:id:313-2023-pse
    DOI: 10.17221/313/2023-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/313/2023-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/313/2023-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/313/2023-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Milan Mirosavljević & Sanja Mikić & Ankica Kondić Špika & Vesna Župunski & Rong Zhou & Lamis Abdelhakim & Carl-Otto Ottosen, 2021. "The effect of heat stress on some main spike traits in 12 wheat cultivars at anthesis and mid-grain filling stage," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(2), pages 71-76.
    2. Nadège Baillot & Christine Girousse & Vincent Allard & Agnès Piquet-Pissaloux & Jacques Le Gouis, 2018. "Different grain-filling rates explain grain-weight differences along the wheat ear," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-15, December.
    3. S. Asseng & F. Ewert & P. Martre & R. P. Rötter & D. B. Lobell & D. Cammarano & B. A. Kimball & M. J. Ottman & G. W. Wall & J. W. White & M. P. Reynolds & P. D. Alderman & P. V. V. Prasad & P. K. Agga, 2015. "Rising temperatures reduce global wheat production," Nature Climate Change, Nature, vol. 5(2), pages 143-147, February.
    4. W. Li & S. Yan & Z. Wang, 2013. "Effect of spikelet position on starch proportion, granule distribution and related enzymes activity in wheat grain," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 59(12), pages 568-574.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao, Shirui & Ryu, Dongryeol & Western, Andrew W & Perry, Eileen & Bogena, Heye & Franssen, Harrie Jan Hendricks, 2024. "Global sensitivity analysis of APSIM-wheat yield predictions to model parameters and inputs," Ecological Modelling, Elsevier, vol. 487(C).
    2. Lu, Ran & Xu, Wen & Zeng, Hongjun & Zhou, Xiangjing, 2023. "Volatility connectedness among the Indian equity and major commodity markets under the COVID-19 scenario," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1465-1481.
    3. Chakravarty, Shourish & Villoria, Nelson B., 2020. "Estimating the spatially heterogeneous elasticities of land supply to U.S. crop agriculture," Conference papers 333156, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. Sponagel, Christian & Bendel, Daniela & Angenendt, Elisabeth & Weber, Tobias Karl David & Gayler, Sebastian & Streck, Thilo & Bahrs, Enno, 2022. "Integrated assessment of regional approaches for biodiversity offsetting in urban-rural areas – A future based case study from Germany using arable land as an example," Land Use Policy, Elsevier, vol. 117(C).
    5. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    6. repec:zib:zbppsc:v:1:y:2021:i:1:p:4-7 is not listed on IDEAS
    7. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Dilshad Ahmad & Malika Kanwal & Muhammad Afzal, 2023. "Climate change effects on riverbank erosion Bait community flood-prone area of Punjab, Pakistan: an application of livelihood vulnerability index," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9387-9415, September.
    9. Zihao Wang & Wenxi Wang & Xiaoming Xie & Yongfa Wang & Zhengzhao Yang & Huiru Peng & Mingming Xin & Yingyin Yao & Zhaorong Hu & Jie Liu & Zhenqi Su & Chaojie Xie & Baoyun Li & Zhongfu Ni & Qixin Sun &, 2022. "Dispersed emergence and protracted domestication of polyploid wheat uncovered by mosaic ancestral haploblock inference," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Liu, Yujie & Zhang, Jie & Qin, Ya, 2020. "How global warming alters future maize yield and water use efficiency in China," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    11. Tan, Lili & Feng, Puyu & Li, Baoguo & Huang, Feng & Liu, De Li & Ren, Pinpin & Liu, Haipeng & Srinivasan, Raghavan & Chen, Yong, 2022. "Climate change impacts on crop water productivity and net groundwater use under a double-cropping system with intensive irrigation in the Haihe River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    12. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    13. Kang, Xiaoyu & Qi, Junyu & Li, Sheng & Meng, Fan-Rui, 2022. "A watershed-scale assessment of climate change impacts on crop yields in Atlantic Canada," Agricultural Water Management, Elsevier, vol. 269(C).
    14. Jie Cao & Zhen Qin & Guangxian Cui & Zhaoyan Chen & Xuejiao Cheng & Huiru Peng & Yingyin Yao & Zhaorong Hu & Weilong Guo & Zhongfu Ni & Qixin Sun & Mingming Xin, 2024. "Natural variation of STKc_GSK3 kinase TaSG-D1 contributes to heat stress tolerance in Indian dwarf wheat," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Ye, Tianyang & Ma, Jifeng & Zhang, Pei & Shan, Song & Liu, Leilei & Tang, Liang & Cao, Weixing & Liu, Bing & Zhu, Yan, 2022. "Interaction effects of irrigation and nitrogen on the coordination between crop water productivity and nitrogen use efficiency in wheat production on the North China Plain," Agricultural Water Management, Elsevier, vol. 271(C).
    16. Hao, Shirui & Ryu, Dongryeol & Western, Andrew & Perry, Eileen & Bogena, Heye & Franssen, Harrie Jan Hendricks, 2021. "Performance of a wheat yield prediction model and factors influencing the performance: A review and meta-analysis," Agricultural Systems, Elsevier, vol. 194(C).
    17. Gaupp, Franziska & Hall, Jim & Mitchell, Dann & Dadson, Simon, 2019. "Increasing risks of multiple breadbasket failure under 1.5 and 2 °C global warming," Agricultural Systems, Elsevier, vol. 175(C), pages 34-45.
    18. Xiao, Dengpan & Liu, De Li & Wang, Bin & Feng, Puyu & Bai, Huizi & Tang, Jianzhao, 2020. "Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios," Agricultural Water Management, Elsevier, vol. 238(C).
    19. Zimmermann, Andrea & Webber, Heidi & Zhao, Gang & Ewert, Frank & Kros, Johannes & Wolf, Joost & Britz, Wolfgang & de Vries, Wim, 2017. "Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements," Agricultural Systems, Elsevier, vol. 157(C), pages 81-92.
    20. Tomoko Hasegawa & Shinichiro Fujimori & Petr Havlík & Hugo Valin & Benjamin Leon Bodirsky & Jonathan C. Doelman & Thomas Fellmann & Page Kyle & Jason F. L. Koopman & Hermann Lotze-Campen & Daniel Maso, 2018. "Risk of increased food insecurity under stringent global climate change mitigation policy," Nature Climate Change, Nature, vol. 8(8), pages 699-703, August.
    21. M. Mehedi Hasan & Mohammad Alauddin & Md. Abdur Rashid Sarker & Mohammad Jakaria & Mahiuddin Alamgir, 2018. "Climate sensitivity of wheat yield in Bangladesh: Implications for Sustainable Development Goals 2 (SDG2) and 6 (SDG6)," Discussion Papers Series 599, School of Economics, University of Queensland, Australia.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:70:y:2024:i:2:id:313-2023-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.