IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v269y2022ics037837742200227x.html
   My bibliography  Save this article

A watershed-scale assessment of climate change impacts on crop yields in Atlantic Canada

Author

Listed:
  • Kang, Xiaoyu
  • Qi, Junyu
  • Li, Sheng
  • Meng, Fan-Rui

Abstract

Agriculture in Atlantic Canada (AC) is dominated by a rain-fed potato production system, with potatoes typically rotating with cereal crops such as barley and oats. Under rain-fed conditions, crop yields are sensitive to weather and its variations and are thus affected by climate change. Previous research regarding climate change impacts on crop yields in AC has been limited to a regional-scale assessment, mostly focusing on climate without considering real-world field conditions (e.g., soil and topography). In this study, an enhanced Soil and Water Assessment Tool (SWAT) model was used to estimate crop yields at the watershed scale under climate change conditions projected for the period of 2020–2099 using global climate models with three different greenhouse gas (GHG) emission scenarios from the Representative Concentration Pathways (i.e., RCP2.6, 4.5, and 8.5). Results suggest that climate change will negatively impact potato and barley yields under all three RCP scenarios. In particular, under the RCP8.5 scenario, there will be significant reductions (13–23%) in crop yields between 2060 and 2099. The leading cause of crop yield reductions is attributed to the soil water stress resulting from increased temperature and evapotranspiration during the growing season due to climate change. Elevated carbon dioxide (CO2) concentrations could potentially increase crop yields due to the CO2 fertilization effect. However, it is not enough to offset the negative impacts of soil water stress. Our results suggest that on top of controlling GHG emissions to below the RCP4.5 level, it is critical to develop and adapt crop, soil, and water management practices such as new crop-rotation systems, early planting dates, and supplemental irrigation to maintain future crop yields in AC.

Suggested Citation

  • Kang, Xiaoyu & Qi, Junyu & Li, Sheng & Meng, Fan-Rui, 2022. "A watershed-scale assessment of climate change impacts on crop yields in Atlantic Canada," Agricultural Water Management, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s037837742200227x
    DOI: 10.1016/j.agwat.2022.107680
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742200227X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sinnathamby, Sumathy & Douglas-Mankin, Kyle R. & Craige, Collin, 2017. "Field-scale calibration of crop-yield parameters in the Soil and Water Assessment Tool (SWAT)," Agricultural Water Management, Elsevier, vol. 180(PA), pages 61-69.
    2. Junyu Qi & Kang Liang & Sheng Li & Lichun Wang & Fan-Rui Meng, 2018. "Hydrological Evaluation of Flow Diversion Terraces Using Downhill-Slope Calculation Method for High Resolution and Accuracy DEMs," Sustainability, MDPI, vol. 10(7), pages 1-13, July.
    3. Chen, Yong & Marek, Gary W. & Marek, Thomas H. & Moorhead, Jerry E. & Heflin, Kevin R. & Brauer, David K. & Gowda, Prasanna H. & Srinivasan, Raghavan, 2019. "Simulating the impacts of climate change on hydrology and crop production in the Northern High Plains of Texas using an improved SWAT model," Agricultural Water Management, Elsevier, vol. 221(C), pages 13-24.
    4. Ahmad, Mirza Junaid & Iqbal, Muhammad Anjum & Choi, Kyung Sook, 2020. "Climate-driven constraints in sustaining future wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 231(C).
    5. Junyu Qi & Sheng Li & Qi Yang & Zisheng Xing & Fan-Rui Meng, 2017. "SWAT Setup with Long-Term Detailed Landuse and Management Records and Modification for a Micro-Watershed Influenced by Freeze-Thaw Cycles," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3953-3974, September.
    6. Magoon, C. A. & Culpepper, Charles W., 1932. "Response of Sweet Corn to Varying Temperatures from Time of Planting to Canning Maturity," Technical Bulletins 163380, United States Department of Agriculture, Economic Research Service.
    7. Junyu Qi & Sheng Li & Qiang Li & Zisheng Xing & Charles P.-A. Bourque & Fan-Rui Meng, 2016. "Assessing an Enhanced Version of SWAT on Water Quantity and Quality Simulation in Regions with Seasonal Snow Cover," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5021-5037, November.
    8. Ullrich, Antje & Volk, Martin, 2009. "Application of the Soil and Water Assessment Tool (SWAT) to predict the impact of alternative management practices on water quality and quantity," Agricultural Water Management, Elsevier, vol. 96(8), pages 1207-1217, August.
    9. Jean-Phillipe Brassard & Bhawan Singh, 2008. "Impacts of climate change and CO 2 increase on agricultural production and adaptation options for Southern Québec, Canada," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(3), pages 241-265, March.
    10. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Gu, Zhe & Ma, Liwang & Zeng, Fanjiang & Li, Lanhai, 2019. "Simulating impacts of climate change on cotton yield and water requirement using RZWQM2," Agricultural Water Management, Elsevier, vol. 222(C), pages 231-241.
    11. Rashid, Muhammad Adil & Jabloun, Mohamed & Andersen, Mathias Neumann & Zhang, Xiying & Olesen, Jørgen Eivind, 2019. "Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 222(C), pages 193-203.
    12. S. Asseng & F. Ewert & P. Martre & R. P. Rötter & D. B. Lobell & D. Cammarano & B. A. Kimball & M. J. Ottman & G. W. Wall & J. W. White & M. P. Reynolds & P. D. Alderman & P. V. V. Prasad & P. K. Agga, 2015. "Rising temperatures reduce global wheat production," Nature Climate Change, Nature, vol. 5(2), pages 143-147, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhanassyl Teleubay & Farabi Yermekov & Ismail Tokbergenov & Zhanat Toleubekova & Amangeldy Igilmanov & Zhadyra Yermekova & Aigerim Assylkhanova, 2022. "Comparison of Snow Indices in Assessing Snow Cover Depth in Northern Kazakhstan," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
    2. Mohammad Zare & Shahid Azam & David Sauchyn, 2023. "Simulation of Climate Change Impacts on Crop Yield in the Saskatchewan Grain Belt Using an Improved SWAT Model," Agriculture, MDPI, vol. 13(11), pages 1-21, November.
    3. Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).
    4. Ennan Zheng & Mengting Qin & Peng Chen & Tianyu Xu & Zhongxue Zhang, 2022. "Climate Change Affects the Utilization of Light and Heat Resources in Paddy Field on the Songnen Plain, China," Agriculture, MDPI, vol. 12(10), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    2. Junyu Qi & Kang Liang & Sheng Li & Lichun Wang & Fan-Rui Meng, 2018. "Hydrological Evaluation of Flow Diversion Terraces Using Downhill-Slope Calculation Method for High Resolution and Accuracy DEMs," Sustainability, MDPI, vol. 10(7), pages 1-13, July.
    3. Pignalosa, Antonio & Silvestri, Nicola & Pugliese, Francesco & Corniello, Alfonso & Gerundo, Carlo & Del Seppia, Nicola & Lucchesi, Massimo & Coscini, Nicola & De Paola, Francesco & Giugni, Maurizio, 2022. "Long-term simulations of Nature-Based Solutions effects on runoff and soil losses in a flat agricultural area within the catchment of Lake Massaciuccoli (Central Italy)," Agricultural Water Management, Elsevier, vol. 273(C).
    4. Li, Na & Yao, Ning & Li, Yi & Chen, Junqing & Liu, Deli & Biswas, Asim & Li, Linchao & Wang, Tianxue & Chen, Xinguo, 2021. "A meta-analysis of the possible impact of climate change on global cotton yield based on crop simulation approaches," Agricultural Systems, Elsevier, vol. 193(C).
    5. Alvaro Alberto López-Lambraño & Luisa Martínez-Acosta & Ena Gámez-Balmaceda & Juan Pablo Medrano-Barboza & John Freddy Remolina López & Alvaro López-Ramos, 2020. "Supply and Demand Analysis of Water Resources. Case Study: Irrigation Water Demand in a Semi-Arid Zone in Mexico," Agriculture, MDPI, vol. 10(8), pages 1-20, August.
    6. Hao, Shirui & Ryu, Dongryeol & Western, Andrew W & Perry, Eileen & Bogena, Heye & Franssen, Harrie Jan Hendricks, 2024. "Global sensitivity analysis of APSIM-wheat yield predictions to model parameters and inputs," Ecological Modelling, Elsevier, vol. 487(C).
    7. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    8. Li, Zhi & Fang, Gonghuan & Chen, Yaning & Duan, Weili & Mukanov, Yerbolat, 2020. "Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming," Agricultural Water Management, Elsevier, vol. 231(C).
    9. Lu, Ran & Xu, Wen & Zeng, Hongjun & Zhou, Xiangjing, 2023. "Volatility connectedness among the Indian equity and major commodity markets under the COVID-19 scenario," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1465-1481.
    10. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    11. Yong Chen & Gary W. Marek & Thomas H. Marek & Dana O. Porter & Jerry E. Moorhead & Qingyu Wang & Kevin R. Heflin & David K. Brauer, 2020. "Spatio-Temporal Analysis of Historical and Future Climate Data in the Texas High Plains," Sustainability, MDPI, vol. 12(15), pages 1-19, July.
    12. Marko Reljić & Marija Romić & Davor Romić & Gordon Gilja & Vedran Mornar & Gabrijel Ondrasek & Marina Bubalo Kovačić & Monika Zovko, 2023. "Advanced Continuous Monitoring System—Tools for Water Resource Management and Decision Support System in Salt Affected Delta," Agriculture, MDPI, vol. 13(2), pages 1-19, February.
    13. Chakravarty, Shourish & Villoria, Nelson B., 2020. "Estimating the spatially heterogeneous elasticities of land supply to U.S. crop agriculture," Conference papers 333156, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Zhang, Dejian & Chen, Xingwei & Yao, Huaxia & Lin, Bingqing, 2015. "Improved calibration scheme of SWAT by separating wet and dry seasons," Ecological Modelling, Elsevier, vol. 301(C), pages 54-61.
    15. Rath, S. & Zamora-Re, M. & Graham, W. & Dukes, M. & Kaplan, D., 2021. "Quantifying nitrate leaching to groundwater from a corn-peanut rotation under a variety of irrigation and nutrient management practices in the Suwannee River Basin, Florida," Agricultural Water Management, Elsevier, vol. 246(C).
    16. Sponagel, Christian & Bendel, Daniela & Angenendt, Elisabeth & Weber, Tobias Karl David & Gayler, Sebastian & Streck, Thilo & Bahrs, Enno, 2022. "Integrated assessment of regional approaches for biodiversity offsetting in urban-rural areas – A future based case study from Germany using arable land as an example," Land Use Policy, Elsevier, vol. 117(C).
    17. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    18. Wu, Hao & Xu, Min & Peng, Zhuoyue & Chen, Xiaoping, 2022. "Quantifying the potential impacts of meltwater on cotton yields in the Tarim River Basin, Central Asia," Agricultural Water Management, Elsevier, vol. 269(C).
    19. repec:zib:zbppsc:v:1:y:2021:i:1:p:4-7 is not listed on IDEAS
    20. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    21. Dilshad Ahmad & Malika Kanwal & Muhammad Afzal, 2023. "Climate change effects on riverbank erosion Bait community flood-prone area of Punjab, Pakistan: an application of livelihood vulnerability index," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9387-9415, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s037837742200227x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.