IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v63y2017i5id36-2017-pse.html
   My bibliography  Save this article

Technological value of raw materials from sugar beet growing area fertilized with digestate from sugar beet pulp biogas plant

Author

Listed:
  • Andrzej BARYGA
  • Bożenna POŁEĆ

    (Sugar Department, Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Leszno, Poland)

  • Ewelina MAŁCZAK

    (Sugar Department, Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Leszno, Poland)

Abstract

The purpose of the work was to study the suitability of residue obtained during the methane fermentation process of sugar beet pulp for agricultural use in sugar beet plantations. Studies were performed with the sugar beet pulp fermentation residue and sugar beets (Beta vulgaris cv. Fighter) harvested from experimental plots. It was found that the by-product of sugar beet pulp digestion may be utilized in agriculture taking into account its chemical and microbiological standards. The nutrients in digestion residue were as assimilable for sugar beet plants as the nutrients in mineral fertilizers. The evaluation of technological parameters of sugar beet harvested from experimental plots based on standard technological criteria showed that irrespective of fertilization treatment, the raw material obtained met most of the requirements and can be used as a stock material for sugar production.

Suggested Citation

  • Andrzej BARYGA & Bożenna POŁEĆ & Ewelina MAŁCZAK, 2017. "Technological value of raw materials from sugar beet growing area fertilized with digestate from sugar beet pulp biogas plant," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 63(5), pages 207-212.
  • Handle: RePEc:caa:jnlpse:v:63:y:2017:i:5:id:36-2017-pse
    DOI: 10.17221/36/2017-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/36/2017-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/36/2017-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/36/2017-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Artyszak & D. Gozdowski & K. Kucińska, 2014. "The yield and technological quality of sugar beet roots cultivated in mulches," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 60(10), pages 464-469.
    2. T. Lošák & J. Hlušek & T. Válka & J. Elbl & T. Vítěz & H. Bělíková & E. Von Bennewitz, 2016. "The effect of fertilisation with digestate on kohlrabi yields and quality," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(6), pages 274-278.
    3. Murphy, J.D. & Power, N., 2009. "Technical and economic analysis of biogas production in Ireland utilising three different crop rotations," Applied Energy, Elsevier, vol. 86(1), pages 25-36, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Budzianowski, Wojciech Marcin, 2011. "Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas?," Energy, Elsevier, vol. 36(11), pages 6318-6325.
    2. Morin, Philippe & Marcos, Bernard & Moresoli, Christine & Laflamme, Claude B., 2010. "Economic and environmental assessment on the energetic valorization of organic material for a municipality in Quebec, Canada," Applied Energy, Elsevier, vol. 87(1), pages 275-283, January.
    3. Martinez, E. & Marcos, A. & Al-Kassir, A. & Jaramillo, M.A. & Mohamad, A.A., 2012. "Mathematical model of a laboratory-scale plant for slaughterhouse effluents biodigestion for biogas production," Applied Energy, Elsevier, vol. 95(C), pages 210-219.
    4. Smyth, Beatrice M. & Smyth, Henry & Murphy, Jerry D., 2011. "Determining the regional potential for a grass biomethane industry," Applied Energy, Elsevier, vol. 88(6), pages 2037-2049, June.
    5. Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
    6. Thamsiriroj, Thanasit & Murphy, Jerry D., 2011. "A critical review of the applicability of biodiesel and grass biomethane as biofuels to satisfy both biofuel targets and sustainability criteria," Applied Energy, Elsevier, vol. 88(4), pages 1008-1019, April.
    7. Bhatnagar, N. & Ryan, D. & Murphy, R. & Enright, A.M., 2022. "A comprehensive review of green policy, anaerobic digestion of animal manure and chicken litter feedstock potential – Global and Irish perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Auburger, Sebastian & Jacobs, Anna & Märländer, Bernward & Bahrs, Enno, 2016. "Economic optimization of feedstock mix for energy production with biogas technology in Germany with a special focus on sugar beets – Effects on greenhouse gas emissions and energy balances," Renewable Energy, Elsevier, vol. 89(C), pages 1-11.
    9. Yang, Jin & Chen, Bin, 2014. "Emergy analysis of a biogas-linked agricultural system in rural China – A case study in Gongcheng Yao Autonomous County," Applied Energy, Elsevier, vol. 118(C), pages 173-182.
    10. L. Hlisnikovský & G. Mühlbachová & E. Kunzová & M. Hejcman & M. Pechová, 2016. "Changes of risky element concentrations under organic and mineral fertilization," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(8), pages 355-360.
    11. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    12. Patterson, Tim & Esteves, Sandra & Dinsdale, Richard & Guwy, Alan, 2011. "An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK," Energy Policy, Elsevier, vol. 39(3), pages 1806-1816, March.
    13. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    14. Chen, Man & Zhang, Fang & Zhang, Yan & Zeng, Raymond J., 2013. "Alkali production from bipolar membrane electrodialysis powered by microbial fuel cell and application for biogas upgrading," Applied Energy, Elsevier, vol. 103(C), pages 428-434.
    15. Asam, Zaki-ul-Zaman & Poulsen, Tjalfe Gorm & Nizami, Abdul-Sattar & Rafique, Rashad & Kiely, Ger & Murphy, Jerry D., 2011. "How can we improve biomethane production per unit of feedstock in biogas plants?," Applied Energy, Elsevier, vol. 88(6), pages 2013-2018, June.
    16. Smyth, Beatrice M. & Murphy, Jerry D. & O'Brien, Catherine M., 2009. "What is the energy balance of grass biomethane in Ireland and other temperate northern European climates?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2349-2360, December.
    17. Teghammar, Anna & Forgács, Gergely & Sárvári Horváth, Ilona & Taherzadeh, Mohammad J., 2014. "Techno-economic study of NMMO pretreatment and biogas production from forest residues," Applied Energy, Elsevier, vol. 116(C), pages 125-133.
    18. Gil-Carrera, Laura & Browne, James D. & Kilgallon, Ian & Murphy, Jerry D., 2019. "Feasibility study of an off-grid biomethane mobile solution for agri-waste," Applied Energy, Elsevier, vol. 239(C), pages 471-481.
    19. Adl, Mehrdad & Sheng, Kuichuan & Gharibi, Arash, 2012. "Technical assessment of bioenergy recovery from cotton stalks through anaerobic digestion process and the effects of inexpensive pre-treatments," Applied Energy, Elsevier, vol. 93(C), pages 251-260.
    20. Khoshnevisan, Benyamin & Shafiei, Marzieh & Rajaeifar, Mohammad Ali & Tabatabaei, Meisam, 2016. "Biogas and bioethanol production from pinewood pre-treated with steam explosion and N-methylmorpholine-N-oxide (NMMO): A comparative life cycle assessment approach," Energy, Elsevier, vol. 114(C), pages 935-950.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:63:y:2017:i:5:id:36-2017-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.