IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i11p6318-6325.html
   My bibliography  Save this article

Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas?

Author

Listed:
  • Budzianowski, Wojciech Marcin

Abstract

The article analyses to what extent ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity can contribute to solving Poland’s carbon capture and sequestration dilemmas. From the criteria-based evaluation of low-carbon power technologies it is found, that biogas-to-electricity is among technologies having increasing production potential in Poland. Therefore, in future biogas will be able to contribute to solving Poland’s CCS dilemmas, because it offers carbon-neutral electricity. Moreover, by applying CCS into biogas-to-electricity the ‘negative net CO2 emissions’ can be achieved. The article examines three biogas-to-electricity technologies involving CO2 capture, i.e. biogas-to-biomethane, biogas-to-CHP and biogas-to-electricity via the ORFC cycle. It is emphasised that the ORFC cycle offers low-cost CO2 separation from a CO2–H2 mixture, low O2-intensity, and the opportunities for advanced mass and energy integration of involved processes. Besides, energy conversion calculations show that the ORFC cycle can offer comparable cycle efficiency with air- and oxy-combustion combined cycles. In regard to the design of biogas-based energy systems it is recommended to include (i) distributed production of biogas in order to avoid costs of long-distance transportation of high-moisture content biomass and (ii) centralised large-scale decarbonised biogas-to-electricity power plants since costs of pipeline transportation of gases are low but large-scale plants could benefit from increased energy and CCS efficiencies.

Suggested Citation

  • Budzianowski, Wojciech Marcin, 2011. "Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas?," Energy, Elsevier, vol. 36(11), pages 6318-6325.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:11:p:6318-6325
    DOI: 10.1016/j.energy.2011.09.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211006578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.09.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Poeschl, Martina & Ward, Shane & Owende, Philip, 2010. "Prospects for expanded utilization of biogas in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1782-1797, September.
    2. Olajire, Abass A., 2010. "CO2 capture and separation technologies for end-of-pipe applications – A review," Energy, Elsevier, vol. 35(6), pages 2610-2628.
    3. Lund, Henrik, 2010. "The implementation of renewable energy systems. Lessons learned from the Danish case," Energy, Elsevier, vol. 35(10), pages 4003-4009.
    4. Montanari, Tania & Finocchio, Elisabetta & Salvatore, Enrico & Garuti, Gilberto & Giordano, Andrea & Pistarino, Chiara & Busca, Guido, 2011. "CO2 separation and landfill biogas upgrading: A comparison of 4A and 13X zeolite adsorbents," Energy, Elsevier, vol. 36(1), pages 314-319.
    5. Wu, C.Z. & Yin, X.L. & Yuan, Z.H. & Zhou, Z.Q. & Zhuang, X.S., 2010. "The development of bioenergy technology in China," Energy, Elsevier, vol. 35(11), pages 4445-4450.
    6. Oldenburg, C.M & Stevens, S.H & Benson, S.M, 2004. "Economic feasibility of carbon sequestration with enhanced gas recovery (CSEGR)," Energy, Elsevier, vol. 29(9), pages 1413-1422.
    7. Murphy, J.D. & Power, N., 2009. "Technical and economic analysis of biogas production in Ireland utilising three different crop rotations," Applied Energy, Elsevier, vol. 86(1), pages 25-36, January.
    8. Kotowicz, Janusz & Chmielniak, Tadeusz & Janusz-Szymańska, Katarzyna, 2010. "The influence of membrane CO2 separation on the efficiency of a coal-fired power plant," Energy, Elsevier, vol. 35(2), pages 841-850.
    9. Zhou, Xinping & Xiao, Bo & Ochieng, Reccab M. & Yang, Jiakuan, 2009. "Utilization of carbon-negative biofuels from low-input high-diversity grassland biomass for energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 479-485, February.
    10. Knapp, Vladimir & Pevec, Dubravko & Matijevic, Mario, 2010. "The potential of fission nuclear power in resolving global climate change under the constraints of nuclear fuel resources and once-through fuel cycles," Energy Policy, Elsevier, vol. 38(11), pages 6793-6803, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krishania, M. & Vijay, V.K. & Chandra, R., 2013. "Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay," Energy, Elsevier, vol. 57(C), pages 359-367.
    2. R. Dunlap, 2012. "A Simple and Objective Carbon Footprint Analysis for Alternative Transportation Technologies," Energy and Environment Research, Canadian Center of Science and Education, vol. 3(1), pages 1-33, June.
    3. Igliński, Bartłomiej & Iglińska, Anna & Cichosz, Marcin & Kujawski, Wojciech & Buczkowski, Roman, 2016. "Renewable energy production in the Łódzkie Voivodeship. The PEST analysis of the RES in the voivodeship and in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 737-750.
    4. Dimopoulos, George G. & Stefanatos, Iason C. & Kakalis, Nikolaos M.P., 2013. "Exergy analysis and optimisation of a steam methane pre-reforming system," Energy, Elsevier, vol. 58(C), pages 17-27.
    5. Igliński, Bartłomiej & Buczkowski, Roman & Cichosz, Marcin, 2015. "Biogas production in Poland—Current state, potential and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 686-695.
    6. Pereira, Amaro Olimpio & Cunha da Costa, Ricardo & Costa, Cláudia do Vale & Marreco, Juliana de Moraes & La Rovere, Emílio Lèbre, 2013. "Perspectives for the expansion of new renewable energy sources in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 49-59.
    7. Venkatesh, G. & Elmi, Rashid Abdi, 2013. "Economic–environmental analysis of handling biogas from sewage sludge digesters in WWTPs (wastewater treatment plants) for energy recovery: Case study of Bekkelaget WWTP in Oslo (Norway)," Energy, Elsevier, vol. 58(C), pages 220-235.
    8. Budzianowski, Wojciech M., 2012. "Target for national carbon intensity of energy by 2050: A case study of Poland's energy system," Energy, Elsevier, vol. 46(1), pages 575-581.
    9. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    10. Dong, Feiqing & Lu, Jianbo, 2013. "Using solar energy to enhance biogas production from livestock residue – A case study of the Tongren biogas engineering pig farm in South China," Energy, Elsevier, vol. 57(C), pages 759-765.
    11. Ricci, Olivia & Selosse, Sandrine, 2013. "Global and regional potential for bioelectricity with carbon capture and storage," Energy Policy, Elsevier, vol. 52(C), pages 689-698.
    12. Congguang Zhang & Jiaming Sun & Jieying Ma & Fuqing Xu & Ling Qiu, 2019. "Environmental Assessment of a Hybrid Solar-Biomass Energy Supplying System: A Case Study," IJERPH, MDPI, vol. 16(12), pages 1-14, June.
    13. Budzianowski, Wojciech M., 2012. "Value-added carbon management technologies for low CO2 intensive carbon-based energy vectors," Energy, Elsevier, vol. 41(1), pages 280-297.
    14. Igliński, Bartłomiej & Buczkowski, Roman & Iglińska, Anna & Cichosz, Marcin & Piechota, Grzegorz & Kujawski, Wojciech, 2012. "Agricultural biogas plants in Poland: Investment process, economical and environmental aspects, biogas potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4890-4900.
    15. Budzianowski, Wojciech M. & Postawa, Karol, 2017. "Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant configurations and operating pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 852-868.
    16. Weng, Baicheng & Wu, Zhu & Li, Zhilin & Yang, Hui, 2012. "Hydrogen generation from hydrolysis of MNH2BH3 and NH3BH3/MH (M=Li, Na) for fuel cells based unmanned submarine vehicles application," Energy, Elsevier, vol. 38(1), pages 205-211.
    17. Piwowar, Arkadiusz & Dzikuć, Maciej, 2016. "Outline of the economic and technical problems associated with the co-combustion of biomass in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 415-420.
    18. Huang, Zishuo & Yu, Hang & Peng, Zhenwei & Zhao, Mei, 2015. "Methods and tools for community energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1335-1348.
    19. Chandra, R. & Takeuchi, H. & Hasegawa, T. & Kumar, R., 2012. "Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments," Energy, Elsevier, vol. 43(1), pages 273-282.
    20. Radosław Kaplan & Michał Kopacz, 2020. "Economic Conditions for Developing Hydrogen Production Based on Coal Gasification with Carbon Capture and Storage in Poland," Energies, MDPI, vol. 13(19), pages 1-20, September.
    21. Zhang, Cunsheng & Su, Haijia & Baeyens, Jan & Tan, Tianwei, 2014. "Reviewing the anaerobic digestion of food waste for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 383-392.
    22. Zhou, Xinping & Bernardes, Marco A. dos S. & Ochieng, Reccab M., 2012. "Influence of atmospheric cross flow on solar updraft tower inflow," Energy, Elsevier, vol. 42(1), pages 393-400.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Budzianowski, Wojciech M., 2012. "Value-added carbon management technologies for low CO2 intensive carbon-based energy vectors," Energy, Elsevier, vol. 41(1), pages 280-297.
    2. Lombardi, L. & Carnevale, E.A., 2016. "Analysis of an innovative process for landfill gas quality improvement," Energy, Elsevier, vol. 109(C), pages 1107-1117.
    3. Smyth, Beatrice M. & Murphy, Jerry D. & O'Brien, Catherine M., 2009. "What is the energy balance of grass biomethane in Ireland and other temperate northern European climates?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2349-2360, December.
    4. Budzianowski, Wojciech M., 2012. "Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6507-6521.
    5. Delgado, Montserrat Rodriguez & Arean, Carlos Otero, 2011. "Carbon monoxide, dinitrogen and carbon dioxide adsorption on zeolite H-Beta: IR spectroscopic and thermodynamic studies," Energy, Elsevier, vol. 36(8), pages 5286-5291.
    6. Thamsiriroj, T. & Smyth, H. & Murphy, J.D., 2011. "A roadmap for the introduction of gaseous transport fuel: A case study for renewable natural gas in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4642-4651.
    7. Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.
    8. Lucija Jukić & Domagoj Vulin & Valentina Kružić & Maja Arnaut, 2021. "Carbon-Negative Scenarios in High CO 2 Gas Condensate Reservoirs," Energies, MDPI, vol. 14(18), pages 1-11, September.
    9. Zhao, Zhijun & Xing, Xiao & Tang, Zhigang & Zheng, Yong & Fei, Weiyang & Liang, Xiangfeng & Ataeivarjovi, E. & Guo, Dong, 2018. "Experiment and simulation study of CO2 solubility in dimethyl carbonate, 1-octyl-3-methylimidazolium tetrafluoroborate and their mixtures," Energy, Elsevier, vol. 143(C), pages 35-42.
    10. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    11. Jiang, Zhujun & Lin, Boqiang, 2014. "The perverse fossil fuel subsidies in China—The scale and effects," Energy, Elsevier, vol. 70(C), pages 411-419.
    12. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    13. Adams, Benjamin M. & Kuehn, Thomas H. & Bielicki, Jeffrey M. & Randolph, Jimmy B. & Saar, Martin O., 2015. "A comparison of electric power output of CO2 Plume Geothermal (CPG) and brine geothermal systems for varying reservoir conditions," Applied Energy, Elsevier, vol. 140(C), pages 365-377.
    14. Dindi, Abdallah & Quang, Dang Viet & Abu-Zahra, Mohammad R.M., 2015. "Simultaneous carbon dioxide capture and utilization using thermal desalination reject brine," Applied Energy, Elsevier, vol. 154(C), pages 298-308.
    15. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    16. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    17. Sovacool, Benjamin K. & Martiskainen, Mari, 2020. "Hot transformations: Governing rapid and deep household heating transitions in China, Denmark, Finland and the United Kingdom," Energy Policy, Elsevier, vol. 139(C).
    18. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    19. Wang, Jun & Xue, Qingwen & Guo, Ting & Mei, Zili & Long, Enshen & Wen, Qian & Huang, Wei & Luo, Tao & Huang, Ruyi, 2018. "A review on CFD simulating method for biogas fermentation material fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 64-73.
    20. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).

    More about this item

    Keywords

    Negative net CO2 emission; Biogas; CCS; Dilemma; Poland;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:11:p:6318-6325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.