IDEAS home Printed from https://ideas.repec.org/a/bnu/journl/v10y2018i3p57-66.html
   My bibliography  Save this article

Methodology of evaluating the consumption of virtual water considering the features of organic production

Author

Listed:
  • Suduk O.Yu.

    (National University of Water and Environmental Engineering)

Abstract

The article is devoted to the study and substantiation of the theoretical and methodological foundations for assessing the consumption of virtual water taking into account the features of organic production using the water trace tool, which allows you to make the right management decisions on the rational use of water resources in the agricultural sector, particularly in organic agricultural production. Water should be a tool that makes it possible to comprehensively assess the attitude of the consumer or producer to the use of freshwater systems: it is a comprehensive indicator of assessing the volume of water consumption and the level of pollution of water resources for all quality components; It is not an indicator of local environmental impact, water consumption and water pollution, since this impact depends on the vulnerability of the local water system and the amount of water used by consumers and pollutants of the freshwater system. The water footprint tool provides accurate information on how water is used for various purposes; is the basis for drawing conclusions about the sustainable and reasonable use of water resources and their distribution, as well as the basis for assessing the environmental, social and economic impacts at the regional level. Based on an adapted methodology, an assessment of the water footprint of organic farming in Ukraine has been carried out. In most regions characterized by low water availability, this indicator is high due to the growing of crops with significant water consumption. In general, the implementation of the proposed methodology will ensure food, environmental safety of the object of study and increase the competitiveness of the industry.

Suggested Citation

  • Suduk O.Yu., 2018. "Methodology of evaluating the consumption of virtual water considering the features of organic production," Balanced Nature Using, Institute of agroecology and environmental management, vol. 10(3), pages 57-66, September.
  • Handle: RePEc:bnu:journl:v:10:y:2018:i:3:p:57-66
    as

    Download full text from publisher

    File URL: http://natureus.org.ua/repec/archive/3_2018/7.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aldaya, M.M. & Allan, J.A. & Hoekstra, A.Y., 2010. "Strategic importance of green water in international crop trade," Ecological Economics, Elsevier, vol. 69(4), pages 887-894, February.
    2. Yang, Hong & Zhou, Yuan & Liu, Junguo, 2009. "Land and water requirements of biofuel and implications for food supply and the environment in China," Energy Policy, Elsevier, vol. 37(5), pages 1876-1885, May.
    3. Alberto Garrido & M. Ramón Llamas & Consuelo Varela-Ortega & Paula Novo & Roberto Rodríguez-Casado & Maite M. Aldaya, 2010. "Water Footprint and Virtual Water Trade in Spain," Natural Resource Management and Policy, Springer, number 978-1-4419-5741-2, December.
    4. Mesfin M. Mekonnen & Arjen Y. Hoekstra, 2014. "Water conservation through trade: the case of Kenya," Water International, Taylor & Francis Journals, vol. 39(4), pages 451-468, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    2. Ignacio Cazcarro & Rosa Duarte & Miguel Martín-Retortillo & Vicente Pinilla & Ana Serrano, 2015. "How Sustainable is the Increase in the Water Footprint of the Spanish Agricultural Sector? A Provincial Analysis between 1955 and 2005–2010," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
    3. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    4. Marta Antonelli & Martina Sartori, 2014. "Unfolding the Potential of the Virtual Water Concept. What is still under debate?," IEFE Working Papers 74, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    5. Aldaya, M. & Niemeyer, I. & Zarate, E., 2011. "Agua y Globalizacion: Retos y oportunidades para una mejor gestion de los recursos hidricos," Revista Espanola de Estudios Agrosociales y Pesqueros, Ministerio de Medio Ambiente, Rural y Marino (formerly Ministry of Agriculture), issue 230, pages 1-23.
    6. Niemeyer, Insa & Garrido, Alberto, 2011. "Latin American Agricultural Trade: The Role of the WTO in Sustainable Virtual Water Flows," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114615, European Association of Agricultural Economists.
    7. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    8. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    9. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    10. Rui Zhao & Hualing He & Ning Zhang, 2015. "Regional Water Footprint Assessment: A Case Study of Leshan City," Sustainability, MDPI, vol. 7(12), pages 1-16, December.
    11. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    12. Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
    13. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    14. L. Brilli & E. Lugato & M. Moriondo & B. Gioli & P. Toscano & A. Zaldei & L. Leolini & C. Cantini & G. Caruso & R. Gucci & P. Merante & C. Dibari & R. Ferrise & M. Bindi & S. Costafreda-Aumedes, 2019. "Carbon sequestration capacity and productivity responses of Mediterranean olive groves under future climates and management options," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(3), pages 467-491, March.
    15. Peng Zhang & Zihan Xu & Weiguo Fan & Jiahui Ren & Ranran Liu & Xiaobin Dong, 2019. "Structure Dynamics and Risk Assessment of Water-Energy-Food Nexus: A Water Footprint Approach," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    16. Lowe, Benjamin H. & Oglethorpe, David R. & Choudhary, Sonal, 2020. "Comparing the economic value of virtual water with volumetric and stress-weighted approaches: A case for the tea supply chain," Ecological Economics, Elsevier, vol. 172(C).
    17. Dennis Wichelns, 2015. "Water productivity and water footprints are not helpful in determining optimal water allocations or efficient management strategies," Water International, Taylor & Francis Journals, vol. 40(7), pages 1059-1070, November.
    18. German, Laura & Schoneveld, George, 2012. "A review of social sustainability considerations among EU-approved voluntary schemes for biofuels, with implications for rural livelihoods," Energy Policy, Elsevier, vol. 51(C), pages 765-778.
    19. Kwon, Gihoon & Tsang, Daniel C.W. & Oh, Jeong-Ik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Pyrolysis of aquatic carbohydrates using CO2 as reactive gas medium: A case study of chitin," Energy, Elsevier, vol. 177(C), pages 136-143.
    20. Gao, Jie & Xie, Pengxuan & Zhuo, La & Shang, Kehui & Ji, Xiangxiang & Wu, Pute, 2021. "Water footprints of irrigated crop production and meteorological driving factors at multiple temporal scales," Agricultural Water Management, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bnu:journl:v:10:y:2018:i:3:p:57-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Olexii Shkuratov (email available below). General contact details of provider: https://edirc.repec.org/data/iaeemua.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.