IDEAS home Printed from https://ideas.repec.org/a/bla/stratm/v42y2021i6p1159-1183.html
   My bibliography  Save this article

Organizing for innovation: A contingency view on innovative team configuration

Author

Listed:
  • Keyvan Vakili
  • Sarah Kaplan

Abstract

Research Summary While innovation has increasingly become a collaborative effort, there is little consensus in research about what types of team configurations might be the most useful for creating breakthrough innovations. Do teams need to include inventors with knowledge breadth for recombination or do they need inventors with knowledge depth for identifying anomalies? Do teams need overlapping knowledge to integrate insights from diverse areas or does this redundancy hamper innovation by creating inefficiencies? In this article, we offer evidence that the answers to these questions may depend on the characteristics of the technologies. Focusing on the degree of modularity and the breadth of application in patent data, we identify empirical patterns suggesting that differing team configurations are associated with different technological domains. Managerial Summary While innovation has increasingly become a collaborative effort, there is little guidance for managers about how you can construct teams to create novel breakthroughs. Who should be on the team? Some have suggested that inventors should have broad knowledge in order to facilitate the recombination of ideas, which is at the heart of creativity. Others suggest that only deep knowledge in an area can lead to novel solutions. How much diversity in backgrounds is useful? Some find that inventors need to have common knowledge in order to integrate their insights. Others worry that this redundancy will lead to inefficiencies that slow down innovation. In this article, we resolve these conflicting recommendations by showing that the team you pick depends on the type of technology.

Suggested Citation

  • Keyvan Vakili & Sarah Kaplan, 2021. "Organizing for innovation: A contingency view on innovative team configuration," Strategic Management Journal, Wiley Blackwell, vol. 42(6), pages 1159-1183, June.
  • Handle: RePEc:bla:stratm:v:42:y:2021:i:6:p:1159-1183
    DOI: 10.1002/smj.3264
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/smj.3264
    Download Restriction: no

    File URL: https://libkey.io/10.1002/smj.3264?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin F. Jones, 2009. "The Burden of Knowledge and the "Death of the Renaissance Man": Is Innovation Getting Harder?," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(1), pages 283-317.
    2. Bruce Kogut & Udo Zander, 1992. "Knowledge of the Firm, Combinative Capabilities, and the Replication of Technology," Organization Science, INFORMS, vol. 3(3), pages 383-397, August.
    3. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    4. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    5. Ajay Agrawal & Avi Goldfarb & Florenta Teodoridis, 2016. "Understanding the Changing Structure of Scientific Inquiry," American Economic Journal: Applied Economics, American Economic Association, vol. 8(1), pages 100-128, January.
    6. Kristina Dahlin & L. Weingart & P. Hinds, 2005. "Team diversity and information use," Post-Print hal-00480406, HAL.
    7. Grégoire Croidieu & Phillip H. Kim, 2018. "Labor of Love : Amateurs and Lay-Expertise Legitimation in the Early U.S. Radio Field," Post-Print hal-02312377, HAL.
    8. Richard N. Langlois, 2002. "Modularity in Technology and Organization," Chapters, in: Nicolai J. Foss & Peter G. Klein (ed.), Entrepreneurship and the Firm, chapter 2, Edward Elgar Publishing.
    9. Deborah Dougherty, 1992. "Interpretive Barriers to Successful Product Innovation in Large Firms," Organization Science, INFORMS, vol. 3(2), pages 179-202, May.
    10. Edward C. Norton & Hua Wang & Chunrong Ai, 2004. "Computing interaction effects and standard errors in logit and probit models," Stata Journal, StataCorp LP, vol. 4(2), pages 154-167, June.
    11. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    12. Robert M. Grant, 1996. "Prospering in Dynamically-Competitive Environments: Organizational Capability as Knowledge Integration," Organization Science, INFORMS, vol. 7(4), pages 375-387, August.
    13. Gautam Ahuja & Curba Morris Lampert, 2001. "Entrepreneurship in the large corporation: a longitudinal study of how established firms create breakthrough inventions," Strategic Management Journal, Wiley Blackwell, vol. 22(6‐7), pages 521-543, June.
    14. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    15. Ai, Chunrong & Norton, Edward C., 2003. "Interaction terms in logit and probit models," Economics Letters, Elsevier, vol. 80(1), pages 123-129, July.
    16. Maarten L. Buis, 2010. "Direct and indirect effects in a logit model," Stata Journal, StataCorp LP, vol. 10(1), pages 11-29, March.
    17. Brusoni, Stefano & Prencipe, Andrea, 2001. "Unpacking the Black Box of Modularity: Technologies, Products and Organizations," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 10(1), pages 179-205, March.
    18. Jill E. Perry-Smith & Christina E. Shalley, 2014. "A Social Composition View of Team Creativity: The Role of Member Nationality-Heterogeneous Ties Outside of the Team," Organization Science, INFORMS, vol. 25(5), pages 1434-1452, October.
    19. Jasjit Singh & Lee Fleming, 2010. "Lone Inventors as Sources of Breakthroughs: Myth or Reality?," Management Science, INFORMS, vol. 56(1), pages 41-56, January.
    20. Bercovitz, Janet & Feldman, Maryann, 2011. "The mechanisms of collaboration in inventive teams: Composition, social networks, and geography," Research Policy, Elsevier, vol. 40(1), pages 81-93, February.
    21. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    22. James G. March, 1991. "Exploration and Exploitation in Organizational Learning," Organization Science, INFORMS, vol. 2(1), pages 71-87, February.
    23. Aija Leiponen & Constance E. Helfat, 2011. "Location, Decentralization, and Knowledge Sources for Innovation," Organization Science, INFORMS, vol. 22(3), pages 641-658, June.
    24. Helpman, Elhanan & Trajtenberg, Manuel, 1994. "A Time to Sow and a Time to Reap: Growth Based on General Purpose Technologies," CEPR Discussion Papers 1080, C.E.P.R. Discussion Papers.
    25. Schilling, Melissa A. & Green, Elad, 2011. "Recombinant search and breakthrough idea generation: An analysis of high impact papers in the social sciences," Research Policy, Elsevier, vol. 40(10), pages 1321-1331.
    26. Lars Bo Jeppesen & Karim R. Lakhani, 2010. "Marginality and Problem-Solving Effectiveness in Broadcast Search," Organization Science, INFORMS, vol. 21(5), pages 1016-1033, October.
    27. Lori Rosenkopf & Atul Nerkar, 2001. "Beyond local search: boundary‐spanning, exploration, and impact in the optical disk industry," Strategic Management Journal, Wiley Blackwell, vol. 22(4), pages 287-306, April.
    28. Pino G. Audia & Jack A. Goncalo, 2007. "Past Success and Creativity over Time: A Study of Inventors in the Hard Disk Drive Industry," Management Science, INFORMS, vol. 53(1), pages 1-15, January.
    29. Kevin J. Boudreau & Eva C. Guinan & Karim R. Lakhani & Christoph Riedl, 2016. "Looking Across and Looking Beyond the Knowledge Frontier: Intellectual Distance, Novelty, and Resource Allocation in Science," Management Science, INFORMS, vol. 62(10), pages 2765-2783, October.
    30. Sam Arts & Reinhilde Veugelers, 2015. "Technology familiarity, recombinant novelty, and breakthrough invention," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 24(6), pages 1215-1246.
    31. Thomas Cornelissen & Katja Sonderhof, 2009. "Partial effects in probit and logit models with a triple dummy-variable interaction term," Stata Journal, StataCorp LP, vol. 9(4), pages 571-583, December.
    32. Michelle Gittelman & Bruce Kogut, 2003. "Does Good Science Lead to Valuable Knowledge? Biotechnology Firms and the Evolutionary Logic of Citation Patterns," Management Science, INFORMS, vol. 49(4), pages 366-382, April.
    33. Boh, Wai Fong & Evaristo, Roberto & Ouderkirk, Andrew, 2014. "Balancing breadth and depth of expertise for innovation: A 3M story," Research Policy, Elsevier, vol. 43(2), pages 349-366.
    34. Ulrich, Karl, 1995. "The role of product architecture in the manufacturing firm," Research Policy, Elsevier, vol. 24(3), pages 419-440, May.
    35. Catherine Durnell Cramton, 2001. "The Mutual Knowledge Problem and Its Consequences for Dispersed Collaboration," Organization Science, INFORMS, vol. 12(3), pages 346-371, June.
    36. Mihaela Stan & Phanish Puranam, 2017. "Organizational adaptation to interdependence shifts: The role of integrator structures," Strategic Management Journal, Wiley Blackwell, vol. 38(5), pages 1041-1061, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Yubing & Lin, Ting & Zhang, Si, 2023. "Does complementary technology within an ecosystem affect disruptive innovation? Evidence from Chinese electric vehicle listed firms," Technology in Society, Elsevier, vol. 74(C).
    2. Jiang, Lin & Clark, Brent B. & Turban, Daniel B., 2023. "Overcoming the challenge of exploration: How decompartmentalization of internal communication enhances the effect of exploration on employee inventive performance," Technovation, Elsevier, vol. 119(C).
    3. Caviggioli, Federico & Colombelli, Alessandra & Ravetti, Chiara, 2022. "Peers and stars: the role of gender among coinventors," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202217, University of Turin.
    4. Changchun Li & Sen Wang, 2022. "Digital Optimization, Green R&D Collaboration, and Green Technological Innovation in Manufacturing Enterprises," Sustainability, MDPI, vol. 14(19), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    2. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    3. Orsatti, Gianluca & Quatraro, Francesco & Pezzoni, Michele, 2020. "The antecedents of green technologies: The role of team-level recombinant capabilities," Research Policy, Elsevier, vol. 49(3).
    4. Maria Chiara Di Guardo & Kathryn Rudie Harrigan & Elona Marku, 2019. "M&A and diversification strategies: what effect on quality of inventive activity?," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 23(3), pages 669-692, September.
    5. Forman, Chris & van Zeebroeck, Nicolas, 2019. "Digital technology adoption and knowledge flows within firms: Can the Internet overcome geographic and technological distance?," Research Policy, Elsevier, vol. 48(8), pages 1-1.
    6. Rajat Khanna & Isin Guler, 2022. "Degree assortativity in collaboration networks and invention performance," Strategic Management Journal, Wiley Blackwell, vol. 43(7), pages 1402-1430, July.
    7. Corredoira, Rafael A. & Banerjee, Preeta M., 2015. "Measuring patent's influence on technological evolution: A study of knowledge spanning and subsequent inventive activity," Research Policy, Elsevier, vol. 44(2), pages 508-521.
    8. Frank Nagle & Florenta Teodoridis, 2020. "Jack of all trades and master of knowledge: The role of diversification in new distant knowledge integration," Strategic Management Journal, Wiley Blackwell, vol. 41(1), pages 55-85, January.
    9. Hyun Ju Jung, 2020. "Recombination sources and breakthrough inventions: university-developed technology versus firm-developed technology," The Journal of Technology Transfer, Springer, vol. 45(4), pages 1121-1166, August.
    10. Samina Karim & Aseem Kaul, 2015. "Structural Recombination and Innovation: Unlocking Intraorganizational Knowledge Synergy Through Structural Change," Organization Science, INFORMS, vol. 26(2), pages 439-455, April.
    11. Mahmoud Ibrahim Fallatah, 2021. "Innovating in the Desert: a Network Perspective on Knowledge Creation in Developing Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(3), pages 1533-1551, September.
    12. Sam Arts & Lee Fleming, 2018. "Paradise of Novelty—Or Loss of Human Capital? Exploring New Fields and Inventive Output," Organization Science, INFORMS, vol. 29(6), pages 1074-1092, December.
    13. Antonio Malva & Stijn Kelchtermans & Bart Leten & Reinhilde Veugelers, 2015. "Basic science as a prescription for breakthrough inventions in the pharmaceutical industry," The Journal of Technology Transfer, Springer, vol. 40(4), pages 670-695, August.
    14. Apa, Roberta & De Noni, Ivan & Orsi, Luigi & Sedita, Silvia Rita, 2018. "Knowledge space oddity: How to increase the intensity and relevance of the technological progress of European regions," Research Policy, Elsevier, vol. 47(9), pages 1700-1712.
    15. Bercovitz, Janet & Feldman, Maryann, 2011. "The mechanisms of collaboration in inventive teams: Composition, social networks, and geography," Research Policy, Elsevier, vol. 40(1), pages 81-93, February.
    16. Ron Boschma & Ernest Miguelez & Rosina Moreno & Diego B. Ocampo-Corrales, 2021. "Technological breakthroughs in European regions: the role of related and unrelated combinations," Papers in Evolutionary Economic Geography (PEEG) 2118, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jun 2021.
    17. Zhang, Feng & Jiang, Guohua & Cantwell, John A., 2019. "Geographically Dispersed Technological Capability Building and MNC Innovative Performance: The Role of Intra-firm Flows of Newly Absorbed Knowledge," Journal of International Management, Elsevier, vol. 25(3), pages 1-1.
    18. Jiang, Lin & Clark, Brent B. & Turban, Daniel B., 2023. "Overcoming the challenge of exploration: How decompartmentalization of internal communication enhances the effect of exploration on employee inventive performance," Technovation, Elsevier, vol. 119(C).
    19. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    20. Amit Jain & Will Mitchell, 2022. "Specialization as a double‐edged sword: The relationship of scientist specialization with R&D productivity and impact following collaborator change," Strategic Management Journal, Wiley Blackwell, vol. 43(5), pages 986-1024, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stratm:v:42:y:2021:i:6:p:1159-1183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/0143-2095 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.