IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v42y2015i4p947-966.html
   My bibliography  Save this article

An Objective Bayesian Criterion to Determine Model Prior Probabilities

Author

Listed:
  • Cristiano Villa
  • Stephen Walker

Abstract

type="main" xml:id="sjos12145-abs-0001"> We discuss the problem of selecting among alternative parametric models within the Bayesian framework. For model selection problems, which involve non-nested models, the common objective choice of a prior on the model space is the uniform distribution. The same applies to situations where the models are nested. It is our contention that assigning equal prior probability to each model is over simplistic. Consequently, we introduce a novel approach to objectively determine model prior probabilities, conditionally, on the choice of priors for the parameters of the models. The idea is based on the notion of the worth of having each model within the selection process. At the heart of the procedure is the measure of this worth using the Kullback–Leibler divergence between densities from different models.

Suggested Citation

  • Cristiano Villa & Stephen Walker, 2015. "An Objective Bayesian Criterion to Determine Model Prior Probabilities," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 947-966, December.
  • Handle: RePEc:bla:scjsta:v:42:y:2015:i:4:p:947-966
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12145
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. M. Carvalho & J. G. Scott, 2009. "Objective Bayesian model selection in Gaussian graphical models," Biometrika, Biometrika Trust, vol. 96(3), pages 497-512.
    2. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    3. Casella, George & Moreno, Elias, 2006. "Objective Bayesian Variable Selection," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 157-167, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    2. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.
    3. Grazian, Clara & Villa, Cristiano & Liseo, Brunero, 2020. "On a loss-based prior for the number of components in mixture models," Statistics & Probability Letters, Elsevier, vol. 158(C).
    4. Laurenţiu Cătălin Hinoveanu & Fabrizio Leisen & Cristiano Villa, 2020. "A loss‐based prior for Gaussian graphical models," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(4), pages 444-466, December.
    5. Hinoveanu, Laurentiu C. & Leisen, Fabrizio & Villa, Cristiano, 2019. "Bayesian loss-based approach to change point analysis," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 61-78.
    6. Diego Battagliese & Clara Grazian & Brunero Liseo & Cristiano Villa, 2023. "Copula modelling with penalized complexity priors: the bivariate case," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 542-565, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido Consonni & Roberta Paroli, 2017. "Objective Bayesian Comparison of Constrained Analysis of Variance Models," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 589-609, September.
    2. Artin Armagan & Russell Zaretzki, 2010. "Model selection via adaptive shrinkage with t priors," Computational Statistics, Springer, vol. 25(3), pages 441-461, September.
    3. Olawale Awe O. & Adedayo Adepoju A., 2018. "Modified Recursive Bayesian Algorithm For Estimating Time-Varying Parameters In Dynamic Linear Models," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 258-293, June.
    4. Justin L. Tobias & Mingliang Li, 2003. "A finite-sample hierarchical analysis of wage variation across public high schools: evidence from the NLSY and high school and beyond," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(3), pages 315-336.
    5. Chen, Cathy W.S. & Gerlach, Richard H. & Tai, Amanda P.J., 2008. "Testing for nonlinearity in mean and volatility for heteroskedastic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 489-499.
    6. Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
    7. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
    8. Junrong Liu & Robin C. Sickles & E. G. Tsionas, 2017. "Bayesian Treatments for Panel Data Stochastic Frontier Models with Time Varying Heterogeneity," Econometrics, MDPI, vol. 5(3), pages 1-21, July.
    9. Markku Lanne & Arto Luoma & Jani Luoto, 2012. "Bayesian Model Selection And Forecasting In Noncausal Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 812-830, August.
    10. Miranowski, John A. & Monchuk, Daniel C., 2004. "Spatial Labor Markets and Technology Spillovers - Analysis from the US Midwest," Working Papers 18224, Iowa State University, Department of Economics.
    11. Haroon Mumtaz & Fulvia Marotta, 2023. "Vulnerability to Climate Change: Evidence from a Dynamic Factor Model," Working Papers 961, Queen Mary University of London, School of Economics and Finance.
    12. Doris A. Oberdabernig & Stefan Humer & Jesus Crespo Cuaresma, 2018. "Democracy, Geography and Model Uncertainty," Scottish Journal of Political Economy, Scottish Economic Society, vol. 65(2), pages 154-185, May.
    13. Moeltner, Klaus, 2019. "Bayesian nonlinear meta regression for benefit transfer," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 44-62.
    14. Fernández, C. & Steel, M.F.J., 1996. "On Bayesian Inference under Sampling from Scale Mixtures of Normals," Discussion Paper 1996-02, Tilburg University, Center for Economic Research.
    15. Susan L. Ettner & Betsy L. Cadwell & Louise B. Russell & Arleen Brown & Andrew J. Karter & Monika Safford & Carol Mangione & Gloria Beckles & William H. Herman & Theodore J. Thompson & and The TRIAD S, 2009. "Investing time in health: do socioeconomically disadvantaged patients spend more or less extra time on diabetes self‐care?," Health Economics, John Wiley & Sons, Ltd., vol. 18(6), pages 645-663, June.
    16. Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.
    17. Francesco Pattarin, 2018. "Spending Policies of Italian Banking Foundations," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0071, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    18. Vasco Cúrdia & Marco Del Negro & Daniel L. Greenwald, 2014. "Rare Shocks, Great Recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1031-1052, November.
    19. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676, July.
    20. Chan, Joshua C.C., 2021. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:42:y:2015:i:4:p:947-966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.