IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v89y2021i3p573-604.html
   My bibliography  Save this article

Supervised Machine Learning Techniques: An Overview with Applications to Banking

Author

Listed:
  • Linwei Hu
  • Jie Chen
  • Joel Vaughan
  • Soroush Aramideh
  • Hanyu Yang
  • Kelly Wang
  • Agus Sudjianto
  • Vijayan N. Nair

Abstract

This article provides an overview of supervised machine learning (ML) with a focus on applications in banking. The supervised ML techniques covered include bagging (random forest), boosting (gradient boosting machine) and neural networks. We begin with an introduction to ML tasks and techniques. This is followed by a description of tree‐based ensemble algorithms, including bagging with random forest and boosting with gradient boosting machines, as well as feedforward neural networks. We then provide an extensive discussion of hyper‐parameter optimisation techniques. Interpretability of ML results is an important topic in banking and other regulated industries, and it is also covered in some depth. The paper concludes with a comparison of the features of different ML algorithms and a discussion of their use in practice. An application from credit risk modelling in banking is used throughout the paper to illustrate the techniques and interpret the results of the algorithms.

Suggested Citation

  • Linwei Hu & Jie Chen & Joel Vaughan & Soroush Aramideh & Hanyu Yang & Kelly Wang & Agus Sudjianto & Vijayan N. Nair, 2021. "Supervised Machine Learning Techniques: An Overview with Applications to Banking," International Statistical Review, International Statistical Institute, vol. 89(3), pages 573-604, December.
  • Handle: RePEc:bla:istatr:v:89:y:2021:i:3:p:573-604
    DOI: 10.1111/insr.12448
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12448
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jing Lei & Max G’Sell & Alessandro Rinaldo & Ryan J. Tibshirani & Larry Wasserman, 2018. "Distribution-Free Predictive Inference for Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1094-1111, July.
    2. G. V. Kass, 1980. "An Exploratory Technique for Investigating Large Quantities of Categorical Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(2), pages 119-127, June.
    3. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    4. Wei-Yin Loh, 2014. "Fifty Years of Classification and Regression Trees," International Statistical Review, International Statistical Institute, vol. 82(3), pages 329-348, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nengfeng Zhou & Zach Zhang & Vijayan N. Nair & Harsh Singhal & Jie Chen, 2022. "Bias, Fairness and Accountability with Artificial Intelligence and Machine Learning Algorithms," International Statistical Review, International Statistical Institute, vol. 90(3), pages 468-480, December.
    2. Nicholas Christakis & Dimitris Drikakis, 2023. "Unsupervised Learning of Particles Dispersion," Mathematics, MDPI, vol. 11(17), pages 1-17, August.
    3. Nicholas Christakis & Dimitris Drikakis, 2023. "Reducing Uncertainty and Increasing Confidence in Unsupervised Learning," Mathematics, MDPI, vol. 11(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
    2. Christophe Dutang & Quentin Guibert, 2021. "An explicit split point procedure in model-based trees allowing for a quick fitting of GLM trees and GLM forests," Post-Print hal-03448250, HAL.
    3. Linwei Hu & Jie Chen & Joel Vaughan & Hanyu Yang & Kelly Wang & Agus Sudjianto & Vijayan N. Nair, 2020. "Supervised Machine Learning Techniques: An Overview with Applications to Banking," Papers 2008.04059, arXiv.org.
    4. Quan Zhiyu & Valdez Emiliano A., 2018. "Predictive analytics of insurance claims using multivariate decision trees," Dependence Modeling, De Gruyter, vol. 6(1), pages 377-407, December.
    5. Debdatta Saha & T. M. Vasuprada, 2021. "Investigating Commercial Incentives for Innovation: An Application in Traditional Medicine," Studies in Microeconomics, , vol. 9(1), pages 66-91, June.
    6. Yu-Shan Shih & Kuang-Hsun Liu, 2019. "Regression trees for detecting preference patterns from rank data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 683-702, September.
    7. Leo Guelman & Montserrat Guillen & Ana M. Pérez-Marín, 2014. "Optimal personalized treatment rules for marketing interventions: A review of methods, a new proposal, and an insurance case study," Working Papers 2014-06, Universitat de Barcelona, UB Riskcenter.
    8. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    9. Matthew Smith & Francisco Alvarez, 2022. "Predicting Firm-Level Bankruptcy in the Spanish Economy Using Extreme Gradient Boosting," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 263-295, January.
    10. Strobl, Carolin & Boulesteix, Anne-Laure & Augustin, Thomas, 2007. "Unbiased split selection for classification trees based on the Gini Index," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 483-501, September.
    11. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    12. Tai, Chung-Ching & Lin, Hung-Wen & Chie, Bin-Tzong & Tung, Chen-Yuan, 2019. "Predicting the failures of prediction markets: A procedure of decision making using classification models," International Journal of Forecasting, Elsevier, vol. 35(1), pages 297-312.
    13. Peiró-Signes, Ángel & Segarra-Oña, Marival & Trull-Domínguez, Óscar & Sánchez-Planelles, Joaquín, 2022. "Exposing the ideal combination of endogenous–exogenous drivers for companies’ ecoinnovative orientation: Results from machine-learning methods," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    14. Richard Berk, 2019. "Accuracy and Fairness for Juvenile Justice Risk Assessments," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 16(1), pages 175-194, March.
    15. Robert Suchting & Michael S. Businelle & Stephen W. Hwang & Nikhil S. Padhye & Yijiong Yang & Diane M. Santa Maria, 2020. "Predicting Daily Sheltering Arrangements among Youth Experiencing Homelessness Using Diary Measurements Collected by Ecological Momentary Assessment," IJERPH, MDPI, vol. 17(18), pages 1-17, September.
    16. Kim, Ahhyoun & Kim, Hyunjoong, 2022. "A new classification tree method with interaction detection capability," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    17. Hayk Manucharyan, 2020. "How do managers actually choose suppliers? Evidence from revealed preference data," Working Papers 2020-12, Faculty of Economic Sciences, University of Warsaw.
    18. Omerašević Amela & Selimović Jasmina, 2020. "Classification Ratemaking Using Decision Tree in the Insurance Market of Bosnia and Herzegovina," South East European Journal of Economics and Business, Sciendo, vol. 15(2), pages 124-139, December.
    19. Müller, Daniel & Leitão, Pedro J. & Sikor, Thomas, 2013. "Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees," Agricultural Systems, Elsevier, vol. 117(C), pages 66-77.
    20. Ghosh, Atish R. & Qureshi, Mahvash S. & Kim, Jun Il & Zalduendo, Juan, 2014. "Surges," Journal of International Economics, Elsevier, vol. 92(2), pages 266-285.
      • Mahvash S Qureshi & Mr. Atish R. Ghosh & Mr. Juan Zalduendo & Mr. Jun I Kim, 2012. "Surges," IMF Working Papers 2012/022, International Monetary Fund.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:89:y:2021:i:3:p:573-604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.