IDEAS home Printed from https://ideas.repec.org/a/bkr/journl/v80y2021i4p50-73.html
   My bibliography  Save this article

Forecasting Aggregate Retail Sales with Google Trends

Author

Listed:
  • Elizaveta Golovanova

    (RANEPA)

  • Andrey Zubarev

    (RANEPA)

Abstract

As the internet grows in popularity, many purchases are being made in online stores. Google Trends is an online tool that collects data on user queries and forms categories from them. We forecast the dynamics of both aggregate retail sales and individual categories of food and non-food products using macroeconomic variables and Google Trends categories that correspond to various product groups. For each type of retail, we consider the best forecasting models from macroeconomic variables and try to improve them by adding trends. For these purposes, we use pseudo-out-of-sample nowcasting as well as recursive forecasting several months ahead. We conclude that forecasts for food and non-food products can improve significantly once trends are added to the models.

Suggested Citation

  • Elizaveta Golovanova & Andrey Zubarev, 2021. "Forecasting Aggregate Retail Sales with Google Trends," Russian Journal of Money and Finance, Bank of Russia, vol. 80(4), pages 50-73, December.
  • Handle: RePEc:bkr:journl:v:80:y:2021:i:4:p:50-73
    DOI: 10.31477/rjmf.202104.50
    as

    Download full text from publisher

    File URL: https://rjmf.econs.online/upload/iblock/49c/Forecasting-Aggregate-Retail-Sales-with-Google-Trends.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.31477/rjmf.202104.50?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    2. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    3. Mikhail Gareev, 2020. "Use of Machine Learning Methods to Forecast Investment in Russia," Russian Journal of Money and Finance, Bank of Russia, vol. 79(1), pages 35-56, March.
    4. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Hasenzagl & Filippo Pellegrino & Lucrezia Reichlin & Giovanni Ricco, 2022. "A Model of the Fed's View on Inflation," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 686-704, October.
    2. Lan Bai & Xiafei Li & Yu Wei & Guiwu Wei, 2022. "Does crude oil futures price really help to predict spot oil price? New evidence from density forecasting," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3694-3712, July.
    3. Nonejad, Nima, 2019. "Forecasting aggregate equity return volatility using crude oil price volatility: The role of nonlinearities and asymmetries," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    4. Czudaj, Robert L., 2022. "Heterogeneity of beliefs and information rigidity in the crude oil market: Evidence from survey data," European Economic Review, Elsevier, vol. 143(C).
    5. Nonejad, Nima, 2020. "Crude oil price volatility and equity return predictability: A comparative out-of-sample study," International Review of Financial Analysis, Elsevier, vol. 71(C).
    6. Krzysztof Drachal, 2022. "Forecasting the Crude Oil Spot Price with Bayesian Symbolic Regression," Energies, MDPI, vol. 16(1), pages 1-29, December.
    7. Nonejad, Nima, 2020. "Crude oil price changes and the United Kingdom real gross domestic product growth rate: An out-of-sample investigation," The Journal of Economic Asymmetries, Elsevier, vol. 21(C).
    8. Bonnier, Jean-Baptiste, 2022. "Forecasting crude oil volatility with exogenous predictors: As good as it GETS?," Energy Economics, Elsevier, vol. 111(C).
    9. Lombardi, Marco J. & Ravazzolo, Francesco, 2016. "On the correlation between commodity and equity returns: Implications for portfolio allocation," Journal of Commodity Markets, Elsevier, vol. 2(1), pages 45-57.
    10. Nonejad, Nima, 2020. "A comprehensive empirical analysis of the predictive impact of the price of crude oil on aggregate equity return volatility," Journal of Commodity Markets, Elsevier, vol. 20(C).
    11. repec:hal:spmain:info:hdl:2441/784ilbkihi9tkblnh7q2514823 is not listed on IDEAS
    12. Anthony Garratt & Shaun P. Vahey & Yunyi Zhang, 2019. "Real‐time forecast combinations for the oil price," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 456-462, April.
    13. Krzysztof Drachal & Daniel González Cortés, 2022. "Estimation of Lockdowns’ Impact on Well-Being in Selected Countries: An Application of Novel Bayesian Methods and Google Search Queries Data," IJERPH, MDPI, vol. 20(1), pages 1-24, December.
    14. Nima Nonejad, 2020. "A detailed look at crude oil price volatility prediction using macroeconomic variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1119-1141, November.
    15. Allayioti, Anastasia & Venditti, Fabrizio, 2024. "The role of comovement and time-varying dynamics in forecasting commodity prices," Working Paper Series 2901, European Central Bank.
    16. Meng, Fanyi & Liu, Li, 2019. "Analyzing the economic sources of oil price volatility: An out-of-sample perspective," Energy, Elsevier, vol. 177(C), pages 476-486.
    17. Nima Nonejad, 2021. "Should crude oil price volatility receive more attention than the price of crude oil? An empirical investigation via a large‐scale out‐of‐sample forecast evaluation of US macroeconomic data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 769-791, August.
    18. Marco J. Lombardi & Francesco Ravazzolo, 2012. "Oil price density forecasts: exploring the linkages with stock markets," Working Paper 2012/24, Norges Bank.
    19. Drachal, Krzysztof, 2018. "Comparison between Bayesian and information-theoretic model averaging: Fossil fuels prices example," Energy Economics, Elsevier, vol. 74(C), pages 208-251.
    20. Dbouk, Wassim & Jamali, Ibrahim, 2018. "Predicting daily oil prices: Linear and non-linear models," Research in International Business and Finance, Elsevier, vol. 46(C), pages 149-165.
    21. Kelly Burns & Imad Moosa, 2017. "Demystifying the Meese–Rogoff puzzle: structural breaks or measures of forecasting accuracy?," Applied Economics, Taylor & Francis Journals, vol. 49(48), pages 4897-4910, October.

    More about this item

    Keywords

    aggregated retail sales; food products; non-food products; Google Trends; big data; forecasting; linear regressions;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bkr:journl:v:80:y:2021:i:4:p:50-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Olga Kuvshinova (email available below). General contact details of provider: https://edirc.repec.org/data/cbrgvru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.