IDEAS home Printed from https://ideas.repec.org/a/ags/ijameu/200241.html
   My bibliography  Save this article

The impact of farm size on sustainability of Dutch dairy farms

Author

Listed:
  • van der Meulen, H.A.B.
  • Dolman, M.A.
  • Jager, J.H.
  • Venema, G.S.

Abstract

Sustainable milk production systems require economically viable, environmentally sound and socially acceptable practices. This study compared the economic, environmental and societal impact of large-scale farms with other dairy farms in the Dutch Farm Accountancy Data Network (FADN). Moreover the integrated sustainable performance of large-scale dairy farms was explored. To quantify the impact of farm size on economic performance, we used net farm income (NFI), labour productivity and solvency. We quantified environmental performance using indicators on non-renewable energy use, greenhouse gas (ghg) emissions, phosphorus surplus and pesticides use. To quantify societal performance, we used indicators on milk quality, cow lifetime and grazing hours. Large-scale dairy farms had a higher labour productivity and NFI than other dairy farms, without compromising on phosphorus surplus, energy use or ghg emission. Higher profits were accompanied by a lower solvency ratio on large-scale farms. Pesticides use, however, was higher on large-scale dairy farms due to a lower share of grassland. Large-scale farms had a shorter cow lifetime and applied less grazing compared to other dairy farms. For societal performance, current FADN does not have the potential to assess animal welfare using preferred animal-based indicators.

Suggested Citation

  • van der Meulen, H.A.B. & Dolman, M.A. & Jager, J.H. & Venema, G.S., 2014. "The impact of farm size on sustainability of Dutch dairy farms," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 3(2), pages 1-5, January.
  • Handle: RePEc:ags:ijameu:200241
    DOI: 10.22004/ag.econ.200241
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/200241/files/119_Van%20Meulen.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.200241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Klaas Calker & Paul Berentsen & Gerard Giesen & Ruud Huirne, 2005. "Identifying and ranking attributes that determine sustainability in Dutch dairy farming," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 22(1), pages 53-63, March.
    2. van Calker, K.J. & Berentsen, P.B.M. & Romero, C. & Giesen, G.W.J. & Huirne, R.B.M., 2006. "Development and application of a multi-attribute sustainability function for Dutch dairy farming systems," Ecological Economics, Elsevier, vol. 57(4), pages 640-658, June.
    3. Thomassen, M.A. & Dolman, M.A. & van Calker, K.J. & de Boer, I.J.M., 2009. "Relating life cycle assessment indicators to gross value added for Dutch dairy farms," Ecological Economics, Elsevier, vol. 68(8-9), pages 2278-2284, June.
    4. van Calker, K.J. & Berentsen, P.B.M. & Giesen, G.W.J. & Huirne, R.B.M., 2008. "Maximising sustainability of Dutch dairy farming systems for different stakeholders: A modelling approach," Ecological Economics, Elsevier, vol. 65(2), pages 407-419, April.
    5. Blank, Steven C. & Erickson, Kenneth W. & Nehring, Richard & Hallahan, Charles, 2009. "Agricultural Profits and Farm Household Wealth: A Farm-level Analysis Using Repeated Cross Sections," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 41(1), pages 207-225, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juraté SAVICKIENÉ & Astrida MICEIKIENÉ, 2018. "Sustainable economic development assessment model for family farms," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(12), pages 527-535.
    2. Claudio Liberati & Concetta Cardillo & Antonella Di Fonzo, 2021. "Sustainability and competitiveness in farms: An evidence of Lazio region agriculture through FADN data analysis," Economia agro-alimentare, FrancoAngeli Editore, vol. 23(3), pages 1-22.
    3. Sulewski, Piotr & Kłoczko-Gajewska, Anna, 2018. "Development of the sustainability index of farms based on surveys and FADN sample," Problems of Agricultural Economics / Zagadnienia Ekonomiki Rolnej 276476, Institute of Agricultural and Food Economics - National Research Institute (IAFE-NRI).
    4. Deparnay-Grunenberg, Anna & Llerandi, Bianca, 2020. "Cultivating Common Good: A Call for Transformative Science to renew the Common Agricultural Policy (CAP)," SocArXiv 3xjgr, Center for Open Science.
    5. Philippe Jeanneaux & Yann Desjeux & Geoffroy Enjolras & Laure Latruffe, 2022. "Farm valuation: A comparison of methods for French farms," Agribusiness, John Wiley & Sons, Ltd., vol. 38(4), pages 786-809, October.
    6. Beadle, Brian, 2023. "The design and application of an agricultural sustainability index using item response theory," EconStor Theses, ZBW - Leibniz Information Centre for Economics, number 278112, July.
    7. Rodica Chetroiu & Ana Elena Cișmileanu & Elena Cofas & Ionut Laurentiu Petre & Steliana Rodino & Vili Dragomir & Ancuța Marin & Petruța Antoneta Turek-Rahoveanu, 2022. "Assessment of the Relations for Determining the Profitability of Dairy Farms, A Premise of Their Economic Sustainability," Sustainability, MDPI, vol. 14(12), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Galioto & Chiara Paffarini & Massimo Chiorri & Biancamaria Torquati & Lucio Cecchini, 2017. "Economic, Environmental, and Animal Welfare Performance on Livestock Farms: Conceptual Model and Application to Some Case Studies in Italy," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    2. Philip Leat & Cesar Revoredo-Giha & Chrysa Lamprinopoulou, 2011. "Scotland’s Food and Drink Policy Discussion: Sustainability Issues in the Food Supply Chain," Sustainability, MDPI, vol. 3(4), pages 1-27, March.
    3. van Calker, K.J. & Berentsen, P.B.M. & Giesen, G.W.J. & Huirne, R.B.M., 2008. "Maximising sustainability of Dutch dairy farming systems for different stakeholders: A modelling approach," Ecological Economics, Elsevier, vol. 65(2), pages 407-419, April.
    4. Agata Malak-Rawlikowska & Monika Gębska & Robert Hoste & Christine Leeb & Claudio Montanari & Michael Wallace & Kees de Roest, 2021. "Developing a Methodology for Aggregated Assessment of the Economic Sustainability of Pig Farms," Energies, MDPI, vol. 14(6), pages 1-25, March.
    5. Sydorovych, Olha & Wossink, Ada, 2007. "Assessing Sustainability of Agricultural Systems: Evidence from a Conjoint Choice Survey," 2007 Annual Meeting, February 4-7, 2007, Mobile, Alabama 34889, Southern Agricultural Economics Association.
    6. Gerdessen, Johanna C. & Pascucci, Stefano, 2013. "Data Envelopment Analysis of sustainability indicators of European agricultural systems at regional level," Agricultural Systems, Elsevier, vol. 118(C), pages 78-90.
    7. Lucio Cecchini & Biancamaria Torquati & Chiara Paffarini & Marco Barbanera & Daniele Foschini & Massimo Chiorri, 2016. "The Milk Supply Chain in Italy’s Umbria Region: Environmental and Economic Sustainability," Sustainability, MDPI, vol. 8(8), pages 1-15, July.
    8. Parra-López, Carlos & Groot, Jeroen C.J. & Carmona-Torres, Carmen & Rossing, Walter A.H., 2008. "Integrating public demands into model-based design for multifunctional agriculture: An application to intensive Dutch dairy landscapes," Ecological Economics, Elsevier, vol. 67(4), pages 538-551, November.
    9. Xabier Díaz de Otálora & Agustín del Prado & Federico Dragoni & Fernando Estellés & Barbara Amon, 2021. "Evaluating Three-Pillar Sustainability Modelling Approaches for Dairy Cattle Production Systems," Sustainability, MDPI, vol. 13(11), pages 1-14, June.
    10. Shingo Yoshida & Hironori Yagi, 2021. "Long-Term Development of Urban Agriculture: Resilience and Sustainability of Farmers Facing the Covid-19 Pandemic in Japan," Sustainability, MDPI, vol. 13(8), pages 1-23, April.
    11. Veronika Fenyves & Tibor Tarnóczi & Zoltán Bács & Dóra Kerezsi & Péter Bajnai & Mihály Szoboszlai, 2022. "Financial efficiency analysis of Hungarian agriculture, fisheries and forestry sector," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(11), pages 413-426.
    12. Katarina Arvidsson Segerkvist & Helena Hansson & Ulf Sonesson & Stefan Gunnarsson, 2021. "A Systematic Mapping of Current Literature on Sustainability at Farm-Level in Beef and Lamb Meat Production," Sustainability, MDPI, vol. 13(5), pages 1-14, February.
    13. Jindřich Špička & Tomáš Vintr & Renata Aulová & Jana Macháčková, 2020. "Trade-off between the economic and environmental sustainability in Czech dual farm structure," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 66(6), pages 243-250.
    14. Danilo Bertoni & Daniele Cavicchioli & Franco Donzelli & Giovanni Ferrazzi & Dario G. Frisio & Roberto Pretolani & Elena Claire Ricci & Vera Ventura, 2018. "Recent Contributions of Agricultural Economics Research in the Field of Sustainable Development," Agriculture, MDPI, vol. 8(12), pages 1-20, December.
    15. Kik, M.C. & Claassen, G.D.H. & Meuwissen, M.P.M. & Smit, A.B. & Saatkamp, H.W., 2021. "Actor analysis for sustainable soil management – A case study from the Netherlands," Land Use Policy, Elsevier, vol. 107(C).
    16. Jacquet, Florence & Butault, Jean-Pierre & Guichard, Laurence, 2011. "An economic analysis of the possibility of reducing pesticides in French field crops," Ecological Economics, Elsevier, vol. 70(9), pages 1638-1648, July.
    17. Gómez-Limón, José A. & Gutiérrez-Martín, Carlos & Riesgo, Laura, 2016. "Modeling at farm level: Positive Multi-Attribute Utility Programming," Omega, Elsevier, vol. 65(C), pages 17-27.
    18. Harvey James, 2006. "Sustainable agriculture and free market economics: Finding common ground in Adam Smith," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 23(4), pages 427-438, December.
    19. Huysveld, Sophie & Van Meensel, Jef & Van linden, Veerle & De Meester, Steven & Peiren, Nico & Muylle, Hilde & Dewulf, Jo & Lauwers, Ludwig, 2017. "Communicative farm-specific diagnosis of potential simultaneous savings in costs and natural resource demand of feed on dairy farms," Agricultural Systems, Elsevier, vol. 150(C), pages 34-45.
    20. Ranjan Roy & Ngai Weng Chan, 2012. "An assessment of agricultural sustainability indicators in Bangladesh: review and synthesis," Environment Systems and Decisions, Springer, vol. 32(1), pages 99-110, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ijameu:200241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/ifmaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.