IDEAS home Printed from https://ideas.repec.org/a/aea/aecrev/v93y2003i2p192-195.html
   My bibliography  Save this article

Models of Thinking, Learning, and Teaching in Games

Author

Listed:
  • Colin Camerer
  • Teck Ho
  • Kuan Chong

Abstract

Noncooperative game theory combines strategic thinking, best-response, and mutual consistency of beliefs and choices (equilibrium). Hundreds of experiments show that in actual behavior these three forces are limited, even when subjects are highly motivated and analytically skilled (Camerer, 2003). The challenge is to create models that are as general, precise, and parsimonious as equilibrium, but which also use cognitive details to explain experimental evidence more accurately and to predict new regularities. This paper describes three exemplar models of behavior in one-shot games (thinking), learning over time, and how repeated "partner" matching affects behavior (teaching) (see Camerer et al., 2002b).

Suggested Citation

  • Colin Camerer & Teck Ho & Kuan Chong, 2003. "Models of Thinking, Learning, and Teaching in Games," American Economic Review, American Economic Association, vol. 93(2), pages 192-195, May.
  • Handle: RePEc:aea:aecrev:v:93:y:2003:i:2:p:192-195
    Note: DOI: 10.1257/000282803321947038
    as

    Download full text from publisher

    File URL: http://www.aeaweb.org/articles.php?doi=10.1257/000282803321947038
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacob K. Goeree & Charles A. Holt, 2001. "Ten Little Treasures of Game Theory and Ten Intuitive Contradictions," American Economic Review, American Economic Association, vol. 91(5), pages 1402-1422, December.
    2. Timothy C. Salmon, 2001. "An Evaluation of Econometric Models of Adaptive Learning," Econometrica, Econometric Society, vol. 69(6), pages 1597-1628, November.
    3. Colin F. Camerer & Teck-Hua Ho & Juin-Kuan Chong, 2004. "A Cognitive Hierarchy Model of Games," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(3), pages 861-898.
    4. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    5. Binmore, Ken, 1988. "Modeling Rational Players: Part II," Economics and Philosophy, Cambridge University Press, vol. 4(1), pages 9-55, April.
    6. Teck H Ho & Colin Camerer & Juin-Kuan Chong, 2003. "Functional EWA: A one-parameter theory of learning in games," Levine's Working Paper Archive 506439000000000514, David K. Levine.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wright, James R. & Leyton-Brown, Kevin, 2017. "Predicting human behavior in unrepeated, simultaneous-move games," Games and Economic Behavior, Elsevier, vol. 106(C), pages 16-37.
    2. Masiliūnas, Aidas, 2023. "Learning in rent-seeking contests with payoff risk and foregone payoff information," Games and Economic Behavior, Elsevier, vol. 140(C), pages 50-72.
    3. Jordi Brandts & David J. Cooper, 2006. "A Change Would Do You Good .... An Experimental Study on How to Overcome Coordination Failure in Organizations," American Economic Review, American Economic Association, vol. 96(3), pages 669-693, June.
    4. Ho, Teck H. & Camerer, Colin F. & Chong, Juin-Kuan, 2007. "Self-tuning experience weighted attraction learning in games," Journal of Economic Theory, Elsevier, vol. 133(1), pages 177-198, March.
    5. Rutstrom, E. Elizabet & Wilcox, Nathaniel, 2008. "Stated versus inferred beliefs: A methodological inquiry and experimental test," MPRA Paper 11852, University Library of Munich, Germany.
    6. Asim Ansari & Ricardo Montoya & Oded Netzer, 2012. "Dynamic learning in behavioral games: A hidden Markov mixture of experts approach," Quantitative Marketing and Economics (QME), Springer, vol. 10(4), pages 475-503, December.
    7. Rutström, E. Elisabet & Wilcox, Nathaniel T., 2009. "Stated beliefs versus inferred beliefs: A methodological inquiry and experimental test," Games and Economic Behavior, Elsevier, vol. 67(2), pages 616-632, November.
    8. Nathaniel T Wilcox, 2003. "Heterogeneity and Learning Principles," Levine's Bibliography 666156000000000435, UCLA Department of Economics.
    9. Camerer, Colin F. & Ho, Teck-Hua, 2015. "Behavioral Game Theory Experiments and Modeling," Handbook of Game Theory with Economic Applications,, Elsevier.
    10. Teck-Hua Ho & So-Eun Park & Xuanming Su, 2021. "A Bayesian Level- k Model in n -Person Games," Management Science, INFORMS, vol. 67(3), pages 1622-1638, March.
    11. Marina S. Sandomirskaia, 2015. "Price-Quantity Competition of Farsighted Firms: Toughness vs. Collusion," HSE Working papers WP BRP 93/EC/2015, National Research University Higher School of Economics.
    12. Josephson, Jens, 2008. "A numerical analysis of the evolutionary stability of learning rules," Journal of Economic Dynamics and Control, Elsevier, vol. 32(5), pages 1569-1599, May.
    13. Ispano, Alessandro & Schwardmann, Peter, 2017. "Cooperating over losses and competing over gains: A social dilemma experiment," Games and Economic Behavior, Elsevier, vol. 105(C), pages 329-348.
    14. Philippe Jehiel, 2022. "Analogy-Based Expectation Equilibrium and Related Concepts:Theory, Applications, and Beyond," Working Papers halshs-03735680, HAL.
    15. Erhao Xie, 2019. "Monetary Payoff and Utility Function in Adaptive Learning Models," Staff Working Papers 19-50, Bank of Canada.
    16. Haruvy, Ernan & Stahl, Dale O., 2007. "Equilibrium selection and bounded rationality in symmetric normal-form games," Journal of Economic Behavior & Organization, Elsevier, vol. 62(1), pages 98-119, January.
    17. Bigoni, Maria & Fort, Margherita, 2013. "Information and learning in oligopoly: An experiment," Games and Economic Behavior, Elsevier, vol. 81(C), pages 192-214.
    18. Wei Chen & Shu-Yu Liu & Chih-Han Chen & Yi-Shan Lee, 2011. "Bounded Memory, Inertia, Sampling and Weighting Model for Market Entry Games," Games, MDPI, vol. 2(1), pages 1-13, March.
    19. Alaoui, Larbi & Janezic, Katharina A. & Penta, Antonio, 2020. "Reasoning about others' reasoning," Journal of Economic Theory, Elsevier, vol. 189(C).
    20. Breitmoser, Yves, 2016. "Stochastic choice, systematic mistakes and preference estimation," MPRA Paper 72779, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:aecrev:v:93:y:2003:i:2:p:192-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.