IDEAS home Printed from https://ideas.repec.org/r/spr/aistmt/v63y2011i3p431-479.html
   My bibliography  Save this item

Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Nakahiro Yoshida, 2022. "Quasi-likelihood analysis and its applications," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 43-60, April.
  2. Jean Jacod & Michael Sørensen, 2018. "A review of asymptotic theory of estimating functions," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 415-434, July.
  3. Alessandro Gregorio & Francesco Iafrate, 2021. "Regularized bridge-type estimation with multiple penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 921-951, October.
  4. Yuta Umezu & Yusuke Shimizu & Hiroki Masuda & Yoshiyuki Ninomiya, 2019. "AIC for the non-concave penalized likelihood method," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 247-274, April.
  5. Simon Clinet & Yoann Potiron, 2016. "Statistical inference for the doubly stochastic self-exciting process," Papers 1607.05831, arXiv.org, revised Jun 2017.
  6. Uehara, Yuma, 2019. "Statistical inference for misspecified ergodic Lévy driven stochastic differential equation models," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 4051-4081.
  7. Kou Fujimori, 2019. "The Dantzig selector for a linear model of diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 475-498, October.
  8. Clinet, Simon & Yoshida, Nakahiro, 2017. "Statistical inference for ergodic point processes and application to Limit Order Book," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1800-1839.
  9. Simon Clinet, 2020. "Quasi-likelihood analysis for marked point processes and application to marked Hawkes processes," Papers 2001.11624, arXiv.org, revised Aug 2021.
  10. Masahiro Kurisaki, 2023. "Parameter estimation for ergodic linear SDEs from partial and discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 279-330, July.
  11. Lorenzo Mercuri & Andrea Perchiazzo & Edit Rroji, 2020. "Finite Mixture Approximation of CARMA(p,q) Models," Papers 2005.10130, arXiv.org, revised May 2020.
  12. Yasutaka Shimizu, 2017. "Threshold Estimation for Stochastic Processes with Small Noise," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 951-988, December.
  13. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Post-Print hal-01799398, HAL.
  14. Simon Clinet, 2022. "Quasi-likelihood analysis for marked point processes and application to marked Hawkes processes," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 189-225, July.
  15. Ogihara, Teppei & Yoshida, Nakahiro, 2014. "Quasi-likelihood analysis for nonsynchronously observed diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 2954-3008.
  16. Uchida, Masayuki & Yoshida, Nakahiro, 2013. "Quasi likelihood analysis of volatility and nondegeneracy of statistical random field," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2851-2876.
  17. Yozo Tonaki & Yusuke Kaino & Masayuki Uchida, 2022. "Adaptive tests for parameter changes in ergodic diffusion processes from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 397-430, July.
  18. Yozo Tonaki & Yusuke Kaino & Masayuki Uchida, 2023. "Estimation for change point of discretely observed ergodic diffusion processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 142-183, March.
  19. Masuda, Hiroki, 2013. "Asymptotics for functionals of self-normalized residuals of discretely observed stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2752-2778.
  20. Papanicolaou, Alex & Giesecke, Kay, 2016. "Variation-based tests for volatility misspecification," Journal of Econometrics, Elsevier, vol. 191(1), pages 217-230.
  21. Haruhiko Inatsugu & Nakahiro Yoshida, 2021. "Global jump filters and quasi-likelihood analysis for volatility," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 555-598, June.
  22. Yusuke Kaino & Shogo H. Nakakita & Masayuki Uchida, 2020. "Hybrid estimation for ergodic diffusion processes based on noisy discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 171-198, April.
  23. Shogo H. Nakakita & Yusuke Kaino & Masayuki Uchida, 2021. "Quasi-likelihood analysis and Bayes-type estimators of an ergodic diffusion plus noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 177-225, February.
  24. Kengo Kamatani & Masayuki Uchida, 2015. "Hybrid multi-step estimators for stochastic differential equations based on sampled data," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 177-204, July.
  25. Takayuki Fujii & Masayuki Uchida, 2014. "AIC type statistics for discretely observed ergodic diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 17(3), pages 267-282, October.
  26. Ioane Muni Toke & Nakahiro Yoshida, 2019. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Working Papers hal-01799398, HAL.
  27. Kohei Chiba, 2020. "An M-estimator for stochastic differential equations driven by fractional Brownian motion with small Hurst parameter," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 319-353, July.
  28. Yusuke Shimizu, 2017. "Moment convergence of regularized least-squares estimator for linear regression model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 1141-1154, October.
  29. A. Gregorio & S. M. Iacus, 2019. "Empirical $$L^2$$ L 2 -distance test statistics for ergodic diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 233-261, July.
  30. Masatoshi Goda, 2023. "Sparse estimation for generalized exponential marked Hawkes process," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 139-169, April.
  31. Yusuke Kaino & Masayuki Uchida, 2018. "Hybrid estimators for stochastic differential equations from reduced data," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 435-454, July.
  32. Yusuke Kaino & Masayuki Uchida, 2018. "Hybrid estimators for small diffusion processes based on reduced data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 745-773, October.
  33. Masayuki Uchida & Nakahiro Yoshida, 2014. "Adaptive Bayes type estimators of ergodic diffusion processes from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 17(2), pages 181-219, July.
  34. Ilia Negri & Yoichi Nishiyama, 2017. "Moment convergence of Z-estimators," Statistical Inference for Stochastic Processes, Springer, vol. 20(3), pages 387-397, October.
  35. Shoichi Eguchi & Hiroki Masuda, 2019. "Data driven time scale in Gaussian quasi-likelihood inference," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 383-430, October.
  36. Ioane Muni Toke & Nakahiro Yoshida, 2018. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Papers 1805.06682, arXiv.org, revised Aug 2019.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.