IDEAS home Printed from https://ideas.repec.org/r/eee/reensy/v205y2021ics0951832020307225.html
   My bibliography  Save this item

Optimal stopping problems for mission oriented systems considering time redundancy

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
  2. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimal attempt scheduling and aborting in heterogenous system performing asynchronous multi-attempt mission," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  3. Liu, Lujie & Yang, Jun, 2023. "A dynamic mission abort policy for the swarm executing missions and its solution method by tailored deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
  4. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimal task sequencing and aborting in multi-attempt multi-task missions with a limited number of attempts," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
  5. Yaguang Wu, 2023. "Optimal Stopping and Loading Rules Considering Multiple Attempts and Task Success Criteria," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
  6. Xian Zhao & Rong Li & Yu Fan & Qingan Qiu, 2022. "Reliability modeling for multi-state systems with a protective device considering multiple triggering mechanism," Journal of Risk and Reliability, , vol. 236(1), pages 173-193, February.
  7. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal inspections and mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
  8. Zhao, Xian & Wang, Xinlei & Dai, Ying & Qiu, Qingan, 2024. "Joint optimization of loading, mission abort and rescue site selection policies for UAV," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
  9. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimal system loading and aborting in additive multi-attempt missions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  10. Zhang, Jingru & Fang, Zhigeng & Dong, Wenjie & Liu, Sifeng & Chen, Ding, 2024. "A mission success probability assessment framework for phased-mission-systems using extended graphical evaluation and review technique," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
  11. Wu, Congshan & Zhao, Xian & Qiu, Qingan & Sun, Jinglei, 2021. "Optimal mission abort policy for k-out-of-n: F balanced systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
  12. Zhao, Xian & Liu, Haoran & Wu, Yaguang & Qiu, Qingan, 2023. "Joint optimization of mission abort and system structure considering dynamic tasks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
  13. Maxim Finkelstein & Ji Hwan Cha & Amy Langston, 2023. "Termination versus operation extension for degrading systems," Journal of Risk and Reliability, , vol. 237(6), pages 1175-1185, December.
  14. Shuai Cao & Xiaoyue Wang, 2024. "Mission abort strategy for generalized k-out-of-n: F systems considering competing failure criteria," Journal of Risk and Reliability, , vol. 238(4), pages 839-852, August.
  15. Meng, Sa & Xing, Liudong & Levitin, Gregory, 2024. "Activation delay and aborting policy minimizing expected losses in consecutive attempts having cumulative effect on mission success," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
  16. Ke Chen & Xian Zhao & Qingan Qiu, 2022. "Optimal Task Abort and Maintenance Policies Considering Time Redundancy," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
  17. Chen, Yuan & Qiu, Qingan & Zhao, Xian, 2022. "Condition-based opportunistic maintenance policies with two-phase inspections for continuous-state systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
  18. Shang, Lijun & Liu, Baoliang & Peng, Rui, 2025. "Designing random collaborative warranty and customizing maintenance strategies for systems subject to mission cycles," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
  19. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Multi-attempt missions with multiple rescue options," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
  20. Lijun Shang & Guojun Shang & Yongjun Du & Qingan Qiu & Li Yang & Qinglai Dong, 2022. "Post-Warranty Replacement Models for the Product under a Hybrid Warranty," Mathematics, MDPI, vol. 10(10), pages 1-18, May.
  21. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2025. "Optimal scheduling, loading and aborting in additive missions performed by multiple components in shock environment," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
  22. Liu, Bing & Huang, Hao & Deng, Qiao, 2022. "On optimal condition based task termination policy for phased task systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
  23. Meng, Sa & Xing, Liudong & Levitin, Gregory, 2024. "Optimizing component activation and operation aborting in missions with consecutive attempts and common abort command," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  24. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2025. "Optimal activation of components exposed to individual and common shock processes in asynchronous multi-phase missions," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
  25. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimal component activation in multi-attempt missions with common shock process," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  26. Zhao, Xian & Dai, Ying & Qiu, Qingan & Wu, Yaguang, 2022. "Joint optimization of mission aborts and allocation of standby components considering mission loss," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.