IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v185y2008i3p1415-1433.html
   My bibliography  Save this item

Pricing and trading European options by combining artificial neural networks and parametric models with implied parameters

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2010. "Generalized parameter functions for option pricing," Journal of Banking & Finance, Elsevier, vol. 34(3), pages 633-646, March.
  2. Gradojevic Nikola, 2016. "Multi-criteria classification for pricing European options," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 123-139, April.
  3. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
  4. Kaeck, Andreas & Seeger, Norman J., 2020. "VIX derivatives, hedging and vol-of-vol risk," European Journal of Operational Research, Elsevier, vol. 283(2), pages 767-782.
  5. Saadet Eskiizmirliler & Korhan Günel & Refet Polat, 2021. "On the Solution of the Black–Scholes Equation Using Feed-Forward Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 915-941, October.
  6. Sermpinis, Georgios & Theofilatos, Konstantinos & Karathanasopoulos, Andreas & Georgopoulos, Efstratios F. & Dunis, Christian, 2013. "Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and Particle Swarm Optimization," European Journal of Operational Research, Elsevier, vol. 225(3), pages 528-540.
  7. Radosław Puka & Bartosz Łamasz & Iwona Skalna & Beata Basiura & Jerzy Duda, 2023. "Knowledge Discovery to Support WTI Crude Oil Price Risk Management," Energies, MDPI, vol. 16(8), pages 1-14, April.
  8. Bodo Herzog & Sufyan Osamah, 2019. "Reverse Engineering of Option Pricing: An AI Application," IJFS, MDPI, vol. 7(4), pages 1-12, November.
  9. Nikola Gradojevic & Dragan Kukolj, 2024. "Unlocking the black box: Non-parametric option pricing before and during COVID-19," Annals of Operations Research, Springer, vol. 334(1), pages 59-82, March.
  10. Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
  11. Radosław Puka & Bartosz Łamasz, 2020. "Using Artificial Neural Networks to Find Buy Signals for WTI Crude Oil Call Options," Energies, MDPI, vol. 13(17), pages 1-20, August.
  12. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
  13. Marcos Vizcaíno-González & Juan Pineiro-Chousa & Jorge Sáinz-González, 2017. "Selecting explanatory factors of voting decisions by means of fsQCA and ANN," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(5), pages 2049-2061, September.
  14. Fei Chen & Charles Sutcliffe, 2012. "Pricing And Hedging Short Sterling Options Using Neural Networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(2), pages 128-149, April.
  15. Ozge Sezgin Alp, 2016. "The Performance of Skewness and Kurtosis Adjusted Option Pricing Model in Emerging Markets: A case of Turkish Derivatives Market," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 5(3), pages 70-84, April.
  16. Christian L Dunis & Spiros D Likothanassis & Andreas S Karathanasopoulos & Georgios S Sermpinis & Konstantinos A Theofilatos, 2013. "A hybrid genetic algorithm–support vector machine approach in the task of forecasting and trading," Journal of Asset Management, Palgrave Macmillan, vol. 14(1), pages 52-71, February.
  17. Yao Wang & Jingmei Zhao & Qing Li & Xiangyu Wei, 2024. "Considering momentum spillover effects via graph neural network in option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(6), pages 1069-1094, June.
  18. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
  19. Maciej Wysocki & Robert Ślepaczuk, 2020. "Artificial Neural Networks Performance in WIG20 Index Options Pricing," Working Papers 2020-19, Faculty of Economic Sciences, University of Warsaw.
  20. Duosi Zheng & Hanzhong Guo & Yanchu Liu & Wei Huang, 2025. "Neural Jumps for Option Pricing," Papers 2506.05137, arXiv.org.
  21. Schnaubelt, Matthias, 2019. "A comparison of machine learning model validation schemes for non-stationary time series data," FAU Discussion Papers in Economics 11/2019, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
  22. Georgios Sermpinis & Andreas Karathanasopoulos & Rafael Rosillo & David Fuente, 2021. "Neural networks in financial trading," Annals of Operations Research, Springer, vol. 297(1), pages 293-308, February.
  23. Federico Platania & Francesco Appio & Celina Toscano Hernandez & Imane El Ouadghiri & Jonathan Peillex, 2025. "A multi-objective pair trading strategy: integrating neural networks and cyclical insights for optimal trading performance," Annals of Operations Research, Springer, vol. 346(2), pages 1553-1572, March.
  24. Lingras, P. & Butz, C.J., 2010. "Rough support vector regression," European Journal of Operational Research, Elsevier, vol. 206(2), pages 445-455, October.
  25. Jeonggyu Huh, 2018. "Pricing Options with Exponential Levy Neural Network," Papers 1802.06520, arXiv.org, revised Sep 2018.
  26. Panayiotis Andreou & Chris Charalambous & Spiros Martzoukos, 2014. "Assessing the performance of symmetric and asymmetric implied volatility functions," Review of Quantitative Finance and Accounting, Springer, vol. 42(3), pages 373-397, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.