My bibliography
Save this item
On the jump activity index for semimartingales
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kong, Xin-Bing & Liu, Zhi & Zhou, Wang, 2019. "A rank test for the number of factors with high-frequency data," Journal of Econometrics, Elsevier, vol. 211(2), pages 439-460.
- Dungey, Mardi & Erdemlioglu, Deniz & Matei, Marius & Yang, Xiye, 2018.
"Testing for mutually exciting jumps and financial flights in high frequency data,"
Journal of Econometrics, Elsevier, vol. 202(1), pages 18-44.
- Mardi Dungey & Deniz Erdemlioglu & Marius Matei & Xiye Yang, 2018. "Testing for mutually exciting jumps and financial flights in high frequency data," Post-Print hal-02995949, HAL.
- José E. Figueroa-López & Cheng Li & Jeffrey Nisen, 2020. "Optimal iterative threshold-kernel estimation of jump diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 517-552, October.
- Zhang, Chuanhai & Zhang, Zhengjun & Xu, Mengyu & Peng, Zhe, 2023. "Good and bad self-excitation: Asymmetric self-exciting jumps in Bitcoin returns," Economic Modelling, Elsevier, vol. 119(C).
- Liu, Qiang & Liu, Yiqi & Liu, Zhi, 2018. "Estimating spot volatility in the presence of infinite variation jumps," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 1958-1987.
- Sun, Yucheng & Xu, Wen & Zhang, Chuanhai, 2023. "Identifying latent factors based on high-frequency data," Journal of Econometrics, Elsevier, vol. 233(1), pages 251-270.
- Leong, Minhao & Kwok, Simon, 2023. "The pricing of jump and diffusive risks in the cross-section of cryptocurrency returns," Journal of Empirical Finance, Elsevier, vol. 74(C).
- Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023.
"The contribution of jump signs and activity to forecasting stock price volatility,"
Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
- , 2019. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 1902, Federal Reserve Bank of Dallas, revised 17 Dec 2022.
- Ruijun Bu & Rodrigo Hizmeri & Marwan Izzeldin & Anthony Murphy & Mike G. Tsionas, 2021. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 202109, University of Liverpool, Department of Economics.
- Xin Zhang & Donggyu Kim & Yazhen Wang, 2016. "Jump Variation Estimation with Noisy High Frequency Financial Data via Wavelets," Econometrics, MDPI, vol. 4(3), pages 1-26, August.
- Liu, Zhi & Kong, Xin-Bing & Jing, Bing-Yi, 2018. "Estimating the integrated volatility using high-frequency data with zero durations," Journal of Econometrics, Elsevier, vol. 204(1), pages 18-32.
- Qiang Liu & Zhi Liu & Chuanhai Zhang, 2020. "Heteroscedasticity test of high-frequency data with jumps and microstructure noise," Papers 2010.07659, arXiv.org.
- Todorov, Viktor, 2019. "Nonparametric inference for the spectral measure of a bivariate pure-jump semimartingale," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 419-451.
- Hounyo, Ulrich & Varneskov, Rasmus T., 2017. "A local stable bootstrap for power variations of pure-jump semimartingales and activity index estimation," Journal of Econometrics, Elsevier, vol. 198(1), pages 10-28.
- Jos'e E. Figueroa-L'opez & Cheng Li & Jeffrey Nisen, 2018. "Optimal Iterative Threshold-Kernel Estimation of Jump Diffusion Processes," Papers 1811.07499, arXiv.org, revised Apr 2020.
- Deniz Erdemlioglu & Christopher J. Neely & Xiye Yang, 2023. "Fed-Driven Systemic Tail Risk: High-Frequency Measurement, Evidence and Implications," Working Papers 2023-016, Federal Reserve Bank of St. Louis, revised 27 May 2025.
- Boswijk, H. Peter & Laeven, Roger J.A. & Yang, Xiye, 2018. "Testing for self-excitation in jumps," Journal of Econometrics, Elsevier, vol. 203(2), pages 256-266.
- Figueroa-López, José E. & Nisen, Jeffrey, 2013. "Optimally thresholded realized power variations for Lévy jump diffusion models," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2648-2677.
- Hizmeri, Rodrigo & Izzeldin, Marwan & Urga, Giovanni, 2025. "Identifying the underlying components of high-frequency data: Pure vs jump diffusion processes," Journal of Empirical Finance, Elsevier, vol. 81(C).
- Kwok, Simon, 2020. "Nonparametric Inference of Jump Autocorrelation," Working Papers 2020-09, University of Sydney, School of Economics, revised Jan 2021.
- Adam D. Bull, 2014. "Near-optimal estimation of jump activity in semimartingales," Papers 1409.8150, arXiv.org, revised Jan 2016.
- Fabian Mies & Ansgar Steland, 2019. "Nonparametric Gaussian inference for stable processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 525-555, October.
- Zhi Liu, 2017. "Jump-robust estimation of volatility with simultaneous presence of microstructure noise and multiple observations," Finance and Stochastics, Springer, vol. 21(2), pages 427-469, April.
- Ulrich Hounyo & Rasmus T. Varneskov, 2015. "A Local Stable Bootstrap for Power Variations of Pure-Jump Semimartingales and Activity Index Estimation," CREATES Research Papers 2015-26, Department of Economics and Business Economics, Aarhus University.
- Xin-Bing Kong, 2017. "On the number of common factors with high-frequency data," Biometrika, Biometrika Trust, vol. 104(2), pages 397-410.
- Torben G. Andersen & Nicola Fusari & Viktor Todorov & Rasmus T. Varneskov, 2018. "Option Panels in Pure-Jump Settings," CREATES Research Papers 2018-04, Department of Economics and Business Economics, Aarhus University.
- Mykland, Per A. & Zhang, Lan, 2016. "Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price," Journal of Econometrics, Elsevier, vol. 194(2), pages 242-262.