IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200036.html
   My bibliography  Save this paper

Nonparametric M-estimation with long-memory errors

Author

Listed:
  • Beran, Jan
  • Ghosh, Sucharita
  • Sibbertsen, Philipp

Abstract

We investigate the behavior of nonparametric kernel M-estimators in the presence of long-memory errors. The optimal bandwidth and a central limit theorem are obtained. It turns out that in the Gaussian case all kernel M-estimators have the same limiting normal distribution. The motivation behind this study is illustrated with an example.

Suggested Citation

  • Beran, Jan & Ghosh, Sucharita & Sibbertsen, Philipp, 2000. "Nonparametric M-estimation with long-memory errors," Technical Reports 2000,36, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200036
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/77191/2/2000-36.pdf
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beran, Jan & Feng, Yuanhua & Ghosh, Sucharita & Sibbertsen, Philipp, 2002. "On robust local polynomial estimation with long-memory errors," International Journal of Forecasting, Elsevier, vol. 18(2), pages 227-241.
    2. Philipp Sibbertsen, 2004. "Long memory versus structural breaks: An overview," Statistical Papers, Springer, vol. 45(4), pages 465-515, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200036. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/isdorde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.