IDEAS home Printed from
   My bibliography  Save this paper

Empirical likelihood-based dimension reduction inference for linear error-in-responses models with validation study


  • Wang, Qihua
  • Härdle, Wolfgang


In this paper, linear errors-in-response models are considered in the presence of validation data on the responses. A semiparametric dimension reduction technique is employed to define an estimator of Ø with asymptotic normality, the estimated empirical loglikelihoods and the adjusted empirical loglikelihoods for the vector of regression coefficients and linear combinations of the regression coefficients, respectively. The estimated empirical log-likelihoods are shown to be asymptotically distributed as weighted sums of independent Χ21 and the adjusted empirical loglikelihoods are proved to be asymptotically distributed as standard chi-squares, respectively. A simulation study is conducted to compare the proposed methods in terms of coverage accuracies and average lengths of the confidence intervals.

Suggested Citation

  • Wang, Qihua & Härdle, Wolfgang, 2002. "Empirical likelihood-based dimension reduction inference for linear error-in-responses models with validation study," SFB 373 Discussion Papers 2002,82, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:200282

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Zaman, Asad & Rousseeuw, Peter J. & Orhan, Mehmet, 2001. "Econometric applications of high-breakdown robust regression techniques," Economics Letters, Elsevier, vol. 71(1), pages 1-8, April.
    2. White, Halbert, 1980. "Nonlinear Regression on Cross-Section Data," Econometrica, Econometric Society, vol. 48(3), pages 721-746, April.
    3. Franco Peracchi, 1988. "Robust M-Estimators," UCLA Economics Working Papers 477, UCLA Department of Economics.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Gengsheng Qin & Xiao-Hua Zhou, 2006. "Empirical Likelihood Inference for the Area under the ROC Curve," Biometrics, The International Biometric Society, vol. 62(2), pages 613-622, June.
    2. Yang, Yiping & Li, Gaorong & Peng, Heng, 2014. "Empirical likelihood of varying coefficient errors-in-variables models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 1-18.
    3. Wang, Qihua & Yu, Keming, 2007. "Likelihood-based kernel estimation in semiparametric errors-in-covariables models with validation data," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 455-480, March.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:200282. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.