IDEAS home Printed from
   My bibliography  Save this paper

Reverse Hillclimbing, Genetic Algorithms and the Busy Beaver Problem


  • Terry Jones
  • Gregory J. E. Rawlins


This paper introduces a new analysis tool called {\it reverse hillclimbing}, and demonstrates how it can be used to evaluate the performance of a genetic algorithm. Using reverse hillclimbing, one can calculate the exact probability that hillclimbing will attain some point in a landscape. From this, the expected number of evaluations before the point is found by hillclimbing can be calculated. This figure can be compared to the average number of evaluations done by a genetic algorithm. This procedure is illustrated using the {\it Busy Beaver problem}, an interesting problem of theoretical importance in its own right. At first sight, a genetic algorithm appears to perform very well on this landscape, after examining only a vanishingly small proportion of the space. Closer examination reveals that the number of evaluations it performs to discover an optimal solution compares poorly with even the simples form of hillclimbing. Finally, several other uses for reverse hillclimbing are discussed.

Suggested Citation

  • Terry Jones & Gregory J. E. Rawlins, 1993. "Reverse Hillclimbing, Genetic Algorithms and the Busy Beaver Problem," Working Papers 93-04-024, Santa Fe Institute.
  • Handle: RePEc:wop:safiwp:93-04-024

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    1. L. Ingber, 1993. "Adaptive Simulated Annealing (ASA)," Lester Ingber Software asa, Lester Ingber.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:93-04-024. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.