IDEAS home Printed from https://ideas.repec.org/p/wop/safiwp/02-02-003.html
   My bibliography  Save this paper

The Evolution of Evolvability in Genetic Linkage Patterns

Author

Listed:
  • John W. Pepper

Abstract

A number of factors have been proposed that may affect the capacity for an evolutionary system to generate adaptation. One that has received little recent attention among biologists is linkage patterns, or the ordering of genes on chromosomes. In this study, a simple model of genetic interactions, implemented in an evolutionary simulation, demonstrates that clustering of epistatically interacting genes increases the rate of adaptation. Moreover, long-term evolution with inversion can reorganize linkage patterns from random gene ordering into this more modular organization, thereby facilitating adaptation. These results are consistent with a large body of biological observations and some mathematical theory. Although linkage patterns are neutral with respect to individual fitness in this model, they are subject to lineage level selection for evolvability. At least two candidate mechanisms may contribute to improved evolvability under epistatic clustering: clustering may reduce interference between selection on different traits, and it may allow the simultaneous optimization of different recombination rates for gene pairs with additive and epistatic fitness effects.

Suggested Citation

  • John W. Pepper, 2002. "The Evolution of Evolvability in Genetic Linkage Patterns," Working Papers 02-02-003, Santa Fe Institute.
  • Handle: RePEc:wop:safiwp:02-02-003
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Keywords

    Recombination; inversion; epistasis; modularity; adaptation;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:02-02-003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: http://edirc.repec.org/data/epstfus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.