IDEAS home Printed from
   My bibliography  Save this paper

Tiling Groups for Wang Tiles


  • Cristopher Moore
  • Ivan Rapaport
  • Eric Rémila


We apply tiling groups and height functions to tilings of regions in the plane by Wang tiles, which are squares with colored boundaries where the colors of shared edges must match. We define a set of tiles as unambiguous if it contains all tiles equivalent to the identity in its tiling group. For all but one set of unambiguous tiles with two colors, we give efficient algorithms that tell whether a given region with colored boundary is tileable, show how to sample random tilings, and how to calculate the number of local moves or "flips" required to transform one tiling into another. We also analyze the lattice structure of the set of tilings, and study several examples with three and four colors as well.

Suggested Citation

  • Cristopher Moore & Ivan Rapaport & Eric Rémila, 2001. "Tiling Groups for Wang Tiles," Working Papers 01-08-045, Santa Fe Institute.
  • Handle: RePEc:wop:safiwp:01-08-045

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item


    Tilings; Wang tiles; lattices; group theory; Markov chains; Monte Carlo algorithms;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:01-08-045. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.