IDEAS home Printed from
   My bibliography  Save this paper

Regularities Unseen, Randomness Observed: Levels of Entropy Convergence


  • James P. Crutchfield
  • David P. Feldman


We study how the Shannon entropy of sequences produced by an information source converges to the source's entropy rate. We synthesize several phenomenological approaches to applying information theoretic measures of randomness and memory to stochastic and deterministic processes by using a hierarchy of derivatives of Shannon entropy convergence. This leads, in turn, to natural measures of (i) apparent memory stored in a source and (ii) the amounts of information that must be extracted from observations of a source in order (a) for it to be optimally predicted and (b) for an observer to synchronize to it. One consequence of ignoring these structural properties is that the missed regularities are converted to apparent randomness. We demonstrate that this problem arises particularly for small data sets; e.g., in settings where one has access to a relatively few, short measurement sequences.

Suggested Citation

  • James P. Crutchfield & David P. Feldman, 2001. "Regularities Unseen, Randomness Observed: Levels of Entropy Convergence," Working Papers 01-02-012, Santa Fe Institute.
  • Handle: RePEc:wop:safiwp:01-02-012

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Bernardo Alves Furtado & Patrícia Alessandra Morita Sakowski & Marina Haddad Tóvolli, 2015. "A Complexity Approach for Public Policies," Discussion Papers 0205, Instituto de Pesquisa Econômica Aplicada - IPEA.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:01-02-012. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.