IDEAS home Printed from https://ideas.repec.org/p/wop/safiwp/00-10-056.html
   My bibliography  Save this paper

A Mean Field Stochastic Theory for Species-Rich Assembled Communities

Author

Listed:
  • Alan McKane
  • David Alonso
  • Ricard V. Solé

Abstract

A dynamical model of an ecological community is analyzed within a "mean-field approximation" in which one of the species interacts with the combination of all of the other species in the community. Within this approximation the model may be formulated as a master equation describing a one-step stochastic process. The stationary distribution is obtained in closed form and is shown to reduce to a logseries or lognormal distribution, depending on the values that the parameters describing the model take on. A hyperbolic relationship between the connectance of the matrix of interspecies interactions and the average number of species, exists for a range of parameter values. The time evolution of the model at short and intermediate times is analyzed using van Kampen's approximation, which is valid when the number of individuals in the community is large. Good agreement with numerical simulations is found. The large time behavior, and the approach to the stationary state, is obtained by solving the equation for the generating function of the probability distribution. The analytical results which follow from the analysis are also in good agreement with direct simulations of the model.

Suggested Citation

  • Alan McKane & David Alonso & Ricard V. Solé, 2000. "A Mean Field Stochastic Theory for Species-Rich Assembled Communities," Working Papers 00-10-056, Santa Fe Institute.
  • Handle: RePEc:wop:safiwp:00-10-056
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian H. Weiß & Philip K. Pollett, 2012. "Chain Binomial Models and Binomial Autoregressive Processes," Biometrics, The International Biometric Society, vol. 68(3), pages 815-824, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:00-10-056. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: http://edirc.repec.org/data/epstfus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.