IDEAS home Printed from https://ideas.repec.org/p/wop/ohstfi/_011.html
   My bibliography  Save this paper

Mean-Variance Analysis of the Performance of Spatial Clustering Methods

Author

Listed:
  • Akhil Kumar
  • Waleed A. Muhanna
  • Raymond A. Patterson

Abstract

This paper describes a simulation study investigating the performance of two non-recursive spatial clustering methods---the inverted naive and the spiral methods---in extensive detail and comparing them with the hilbert fractal method that has been shown in previous studies to outperform other recursive clustering methods. The paper highlights the importance of analyzing the sample variance when evaluating the relative performance of various spatial clustering methods. The clustering performance of the methods is examined in terms of both the mean and variance values of the number of clusters (runs of consecutive disk blocks) that must be accessed to retrieve a query region of a given size and orientation. The results show that, for a blocking factor of 1, the mean values for the spiral method are the best, and on average, about 30% better than for the other two methods. In terms of variance, the inverted naive method is the best followed by the spiral and hilbert methods, in that order. We also study the impact of varying query size and the skew ratio (between the X and Y dimensions) for each method. While these performance results do not generalize for higher blocking factors, we beleive that they are useful for both researchers and practitioners to know because several previous studies have also examined this special case, and also because it can arise in some important GIS applications as describe in the paper.

Suggested Citation

  • Akhil Kumar & Waleed A. Muhanna & Raymond A. Patterson, "undated". "Mean-Variance Analysis of the Performance of Spatial Clustering Methods," Corporate Finance & Organizations _011, Ohio State University.
  • Handle: RePEc:wop:ohstfi:_011
    as

    Download full text from publisher

    File URL: http://www.cob.ohio-state.edu/dept/acctmis/fac/muhanna/research/clustp.ps
    Download Restriction: no

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:ohstfi:_011. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: http://edirc.repec.org/data/dfohsus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.