IDEAS home Printed from
   My bibliography  Save this paper

Estimation of power laws for city size data: An optimal methodology


  • Faustino Prieto


  • Josè Maria Sarabia


Power laws appear widely in many branches of economics, geography, demography and other social sciences. In particular, the upper tail of city size distributions appear to follow power laws, as many researchers have shown for different countries and different periods of times. A crucial point in the estimation of these laws is the correct choice of the truncation point. The aim of this paper is to investigate how to choice this truncation point from an optimal point of view. A new methodology based on the Akaike information criterion is proposed. An extensive simulation study is carried out in order to prove the existence of this optimal point, under different assumptions about the underlying population. Several kind of populations are considered, including lognormal and population with heavy tails. Finally, the methodology is used for the optimal estimation of power laws in city size data sets for USA and Spain for several years.

Suggested Citation

  • Faustino Prieto & Josè Maria Sarabia, 2011. "Estimation of power laws for city size data: An optimal methodology," ERSA conference papers ersa10p581, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa10p581

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa10p581. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gunther Maier). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.