IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/11267.html
   My bibliography  Save this paper

Rigging the Scores : Corruption through Scoring Rule Manipulation in Public Procurement Auctions

Author

Listed:
  • Chen, Qianmiao

Abstract

Public procurement is highly susceptible to corruption, especially in developing countries. Although open auctions are widely adopted to curb it, this paper finds that corruption remains prevalent even within this procurement format. Procurement officers can collaborate with firms to manipulate scoring rules, ensuring predetermined winners, while corrupt firms submit noncompetitive bids to meet minimum bidder requirements. Using extensive data from Chinese public procurement auctions, the paper introduces model-driven statistical tools to detect such corruption, identifying a corruption rate of 65 percent. A procurement expert audit survey confirms the tools’ reliability, with a 91 percent probability that experts recognize suspicious scoring rules when flagged. Firm-level analysis reveals that local, state-owned, and less productive firms are favored in corrupt auctions. Lastly, the paper explores policy implications. Analysis of the national anti-corruption campaign since 2012 suggests that general investigations may be insufficient to address deeply ingrained corrupt practices. Using counterfactuals based on an estimated structural model, the paper shows that implementing anonymous call-for-tender evaluations could improve social welfare by 10 percent by eliminating suspicious rules and encouraging broader participation.

Suggested Citation

  • Chen, Qianmiao, 2025. "Rigging the Scores : Corruption through Scoring Rule Manipulation in Public Procurement Auctions," Policy Research Working Paper Series 11267, The World Bank.
  • Handle: RePEc:wbk:wbrwps:11267
    as

    Download full text from publisher

    File URL: https://documents.worldbank.org/curated/en/099651112022531100/pdf/IDU-75ca54fd-e535-4c3e-abb3-d5a7de9888b7.pdf
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:11267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roula I. Yazigi (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.