IDEAS home Printed from https://ideas.repec.org/p/upf/upfgen/1322.html
   My bibliography  Save this paper

Launching prices for new pharmaceuticals in heavily regulated and subsidized markets

Author

Listed:

Abstract

This paper provides empirical evidence on the explanatory factors affecting introductory prices of new pharmaceuticals in a heavily regulated and highly subsidized market. We collect a data set consisting of all new chemical entities launched in Spain between 1997 and 2005, and model launching prices. We found that, unlike in the US and Sweden, therapeutically "innovative" products are not overpriced relative to "imitative" ones. Price setting is mainly used as a mechanism to adjust for inflation independently of the degree of innovation. The drugs that enter through the centralized EMA approval procedure are overpriced, which may be a consequence of market globalization and international price setting.

Suggested Citation

  • Jaume Puig & Beatriz González López-Valcárcel, 2012. "Launching prices for new pharmaceuticals in heavily regulated and subsidized markets," Economics Working Papers 1322, Department of Economics and Business, Universitat Pompeu Fabra.
  • Handle: RePEc:upf:upfgen:1322
    as

    Download full text from publisher

    File URL: https://econ-papers.upf.edu/papers/1322.pdf
    File Function: Whole Paper
    Download Restriction: no

    References listed on IDEAS

    as
    1. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    2. Jess Benhabib & Roger E.A. Farmer, 2000. "The Monetary Transmission Mechanism," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 3(3), pages 523-550, July.
    3. Markku Lanne & Helmut Lütkepohl, 2008. "Identifying Monetary Policy Shocks via Changes in Volatility," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(6), pages 1131-1149, September.
    4. Waggoner, Daniel F. & Zha, Tao, 2003. "A Gibbs sampler for structural vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 28(2), pages 349-366, November.
    5. Jonas E. Arias & Juan Rubio-Ramirez & Daniel F. Waggoner, 2013. "Inference Based on SVARs Identied with Sign and Zero Restrictions: Theory and Applications," Working Papers 2013-24, FEDEA.
    6. Fabio Canova & Matteo Ciccarelli, 2009. "Estimating Multicountry Var Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 929-959, August.
    7. Canova, Fabio & Ciccarelli, Matteo & Ortega, Eva, 2012. "Do institutional changes affect business cycles? Evidence from Europe," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1520-1533.
    8. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2010. "Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference," Review of Economic Studies, Oxford University Press, vol. 77(2), pages 665-696.
    9. Bernanke, Ben S & Blinder, Alan S, 1992. "The Federal Funds Rate and the Channels of Monetary Transmission," American Economic Review, American Economic Association, vol. 82(4), pages 901-921, September.
    10. Canova, Fabio & Ferroni, Filippo, 2012. "The dynamics of US inflation: Can monetary policy explain the changes?," Journal of Econometrics, Elsevier, vol. 167(1), pages 47-60.
    11. Kociecki, Andrzej & Rubaszek, Michał & Ca' Zorzi, Michele, 2012. "Bayesian analysis of recursive SVAR models with overidentifying restrictions," Working Paper Series 1492, European Central Bank.
    12. Daniel F. Waggoner & Tao Zha, 1999. "Conditional Forecasts In Dynamic Multivariate Models," The Review of Economics and Statistics, MIT Press, pages 639-651.
    13. Luca Gambetti & Evi Pappa & Fabio Canova, 2008. "The Structural Dynamics of U.S. Output and Inflation: What Explains the Changes?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(2-3), pages 369-388, March.
    14. Canova, Fabio & Gambetti, Luca, 2009. "Structural changes in the US economy: Is there a role for monetary policy?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 477-490, February.
    15. Ben S. Bernanke & Ilian Mihov, 1998. "Measuring Monetary Policy," The Quarterly Journal of Economics, Oxford University Press, vol. 113(3), pages 869-902.
    16. Robertson, John C & Tallman, Ellis W, 2001. "Improving Federal-Funds Rate Forecasts in VAR Models Used for Policy Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 324-330, July.
    17. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    18. Gordon, David B & Leeper, Eric M, 1994. "The Dynamic Impacts of Monetary Policy: An Exercise in Tentative Identification," Journal of Political Economy, University of Chicago Press, vol. 102(6), pages 1228-1247, December.
    19. Eric M. Leeper & Christopher A. Sims & Tao Zha, 1996. "What Does Monetary Policy Do?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 27(2), pages 1-78.
    20. Geweke, John & Tanizaki, Hisashi, 2001. "Bayesian estimation of state-space models using the Metropolis-Hastings algorithm within Gibbs sampling," Computational Statistics & Data Analysis, Elsevier, vol. 37(2), pages 151-170, August.
    21. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    22. Jean Boivin & Marc P. Giannoni, 2006. "Has Monetary Policy Become More Effective?," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 445-462, August.
    23. Canova, Fabio & Paustian, Matthias, 2011. "Business cycle measurement with some theory," Journal of Monetary Economics, Elsevier, vol. 58(4), pages 345-361.
    24. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    25. Koop, Gary & Potter, Simon M., 2011. "Time varying VARs with inequality restrictions," Journal of Economic Dynamics and Control, Elsevier, vol. 35(7), pages 1126-1138, July.
    26. Chib, Siddhartha & Greenberg, Edward, 1995. "Hierarchical analysis of SUR models with extensions to correlated serial errors and time-varying parameter models," Journal of Econometrics, Elsevier, vol. 68(2), pages 339-360, August.
    27. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 821-852.
    28. Edward Herbst & Frank Schorfheide, 2014. "Sequential Monte Carlo Sampling For Dsge Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1073-1098, November.
    29. Strongin, Steven, 1995. "The identification of monetary policy disturbances explaining the liquidity puzzle," Journal of Monetary Economics, Elsevier, vol. 35(3), pages 463-497, June.
    30. Lakdawala, Aeimit, 2016. "Changes in Federal Reserve preferences," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 124-143.
    31. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    pharmaceuticals; price competition; price regulation;

    JEL classification:

    • L11 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Production, Pricing, and Market Structure; Size Distribution of Firms
    • L65 - Industrial Organization - - Industry Studies: Manufacturing - - - Chemicals; Rubber; Drugs; Biotechnology; Plastics
    • I10 - Health, Education, and Welfare - - Health - - - General
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:1322. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.econ.upf.edu/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.