IDEAS home Printed from https://ideas.repec.org/p/upf/upfgen/1054.html
   My bibliography  Save this paper

How much structure in empirical models?

Author

Listed:
  • Fabio Canova

Abstract

This chapter highlights the problems that structural methods and SVAR approaches have when estimating DSGE models and examining their ability to capture important features of the data. We show that structural methods are subject to severe identification problems due, in large part, to the nature of DSGE models. The problems can be patched up in a number of ways but solved only if DSGEs are completely reparametrized or respecified. The potential misspecification of the structural relationships give Bayesian methods an hedge over classical ones in structural estimation. SVAR approaches may face invertibility problems but simple diagnostics can help to detect and remedy these problems. A pragmatic empirical approach ought to use the flexibility of SVARs against potential misspecification of the structural relationships but must firmly tie SVARs to the class of DSGE models which could have have generated the data.

Suggested Citation

  • Fabio Canova, 2007. "How much structure in empirical models?," Economics Working Papers 1054, Department of Economics and Business, Universitat Pompeu Fabra.
  • Handle: RePEc:upf:upfgen:1054
    as

    Download full text from publisher

    File URL: https://econ-papers.upf.edu/papers/1054.pdf
    File Function: Whole Paper
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    2. Christopher A. Sims, 1986. "Are forecasting models usable for policy analysis?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 10(Win), pages 2-16.
    3. Canova, Fabio & Sala, Luca, 2009. "Back to square one: Identification issues in DSGE models," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 431-449, May.
    4. Thomas A. Lubik & Frank Schorfheide, 2004. "Testing for Indeterminacy: An Application to U.S. Monetary Policy," American Economic Review, American Economic Association, vol. 94(1), pages 190-217, March.
    5. James M. Nason & Gregor W. Smith, 2008. "Identifying the new Keynesian Phillips curve," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 525-551.
    6. Marco Del Negro & Frank Schorfheide, 2009. "Monetary Policy Analysis with Potentially Misspecified Models," American Economic Review, American Economic Association, vol. 99(4), pages 1415-1450, September.
    7. Peter N. Ireland, 2004. "Technology Shocks in the New Keynesian Model," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 923-936, November.
    8. Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
    9. V. V. Chari & Patrick J. Kehoe & Ellen R. McGrattan, 2004. "A Critique of Structural VARs Using Real Business Cycle Theory," Levine's Bibliography 122247000000000518, UCLA Department of Economics.
    10. Andreas Beyer & Roger E. A. Farmer, 2004. "On the Indeterminacy of New-Keynesian Economics," Computing in Economics and Finance 2004 152, Society for Computational Economics.
    11. V. V. Chari & Patrick J. Kehoe & Ellen R. McGrattan, 2007. "Business Cycle Accounting," Econometrica, Econometric Society, vol. 75(3), pages 781-836, May.
    12. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    13. Del Negro, Marco & Schorfheide, Frank & Smets, Frank & Wouters, Rafael, 2007. "On the Fit of New Keynesian Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 123-143, April.
    14. Timothy Cogley & Thomas J. Sargent, 2005. "Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
    15. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    16. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.
    17. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    18. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    19. Galí, Jordi & Rabanal, Pau, 2004. "Technology Shocks and Aggregate Fluctuations: How Well Does the RBC Model Fit Post-War US Data?," CEPR Discussion Papers 4522, C.E.P.R. Discussion Papers.
    20. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2008. "How Structural Are Structural Parameters?," NBER Chapters, in: NBER Macroeconomics Annual 2007, Volume 22, pages 83-137, National Bureau of Economic Research, Inc.
    21. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
    22. Fabio Canova & Luca Gambetti, 2010. "Do Expectations Matter? The Great Moderation Revisited," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(3), pages 183-205, July.
    23. Marco Del Negro & Frank Schorfheide, 2005. "Policy Predictions if the Model Does Not Fit," Journal of the European Economic Association, MIT Press, vol. 3(2-3), pages 434-443, 04/05.
    24. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, May.
    25. Rosen, Adam M., 2008. "Confidence sets for partially identified parameters that satisfy a finite number of moment inequalities," Journal of Econometrics, Elsevier, vol. 146(1), pages 107-117, September.
    26. Faust, Jon & Leeper, Eric M, 1997. "When Do Long-Run Identifying Restrictions Give Reliable Results?," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 345-353, July.
    27. Claude Diebolt & Catherine Kyrtsou (ed.), 2005. "New Trends in Macroeconomics," Springer Books, Springer, number 978-3-540-28556-4, October.
    28. Bernanke, Ben S., 1986. "Alternative explanations of the money-income correlation," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 25(1), pages 49-99, January.
    29. Marc P. Giannoni & Jean Boivin, 2005. "DSGE Models in a Data-Rich Environment," Computing in Economics and Finance 2005 431, Society for Computational Economics.
    30. Braun, Phillip A. & Mittnik, Stefan, 1993. "Misspecifications in vector autoregressions and their effects on impulse responses and variance decompositions," Journal of Econometrics, Elsevier, vol. 59(3), pages 319-341, October.
    31. Ma, Adrian, 2002. "GMM estimation of the new Phillips curve," Economics Letters, Elsevier, vol. 76(3), pages 411-417, August.
    32. Jean Boivin & Marc P. Giannoni, 2006. "Has Monetary Policy Become More Effective?," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 445-462, August.
    33. Julio J. Rotemberg & Michael Woodford, 1997. "An Optimization-Based Econometric Framework for the Evaluation of Monetary Policy," NBER Chapters, in: NBER Macroeconomics Annual 1997, Volume 12, pages 297-361, National Bureau of Economic Research, Inc.
    34. Choi, In & Phillips, Peter C. B., 1992. "Asymptotic and finite sample distribution theory for IV estimators and tests in partially identified structural equations," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 113-150.
    35. Ellen R. McGrattan, 2006. "Real business cycles," Staff Report 370, Federal Reserve Bank of Minneapolis.
    36. Canova, Fabio, 1995. "Sensitivity Analysis and Model Evaluation in Simulated Dynamic General Equilibrium Economies," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 36(2), pages 477-501, May.
    37. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.
    38. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlo A. Favero, 2009. "The Econometrics of Monetary Policy: An Overview," Palgrave Macmillan Books, in: Terence C. Mills & Kerry Patterson (ed.), Palgrave Handbook of Econometrics, chapter 16, pages 821-850, Palgrave Macmillan.
    2. Giorgio Fagiolo & Andrea Roventini, 2017. "Macroeconomic Policy in DSGE and Agent-Based Models Redux: New Developments and Challenges Ahead," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(1), pages 1-1.
    3. Giovanni Dosi & Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2012. "Economic policies with endogenous innovation and Keynesian demand management," Chapters, in: Robert M. Solow & Jean-Philippe Touffut (ed.), What’s Right with Macroeconomics?, chapter 5, pages 110-148, Edward Elgar Publishing.
    4. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    5. Baumeister, Christiane & Benati, Luca, 2010. "Unconventional monetary policy and the great recession - Estimating the impact of a compression in the yield spread at the zero lower bound," Working Paper Series 1258, European Central Bank.
    6. Forni, Lorenzo & Monteforte, Libero & Sessa, Luca, 2009. "The general equilibrium effects of fiscal policy: Estimates for the Euro area," Journal of Public Economics, Elsevier, vol. 93(3-4), pages 559-585, April.
    7. Giorgio Fagiolo & Andrea Roventini, 2012. "Macroeconomic Policy in DSGE and Agent-Based Models," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(5), pages 67-116.
    8. Fabio Canova & Filippo Ferroni, 2011. "Multiple filtering devices for the estimation of cyclical DSGE models," Quantitative Economics, Econometric Society, vol. 2(1), pages 73-98, March.
    9. Dosi, Giovanni & Fagiolo, Giorgio & Roventini, Andrea, 2010. "Schumpeter meeting Keynes: A policy-friendly model of endogenous growth and business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1748-1767, September.
    10. Carlo A. Favero, 2007. "Model Evaluation in Macroeconometrics: from early empirical macroeconomic models to DSGE models," Working Papers 327, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    11. Giorgio Fagiolo & Andrea Roventini, 2016. "Macroeconomic Policy in DGSE and Agent-Based Models Redux," Working Papers hal-03459348, HAL.
    12. G. Fagiolo & A. Roventini., 2009. "On the Scientific Status of Economic Policy: A Tale of Alternative Paradigms," VOPROSY ECONOMIKI, N.P. Redaktsiya zhurnala "Voprosy Economiki", vol. 6.
    13. Giovanni Dosi & Andrea Roventini, 2019. "More is different ... and complex! the case for agent-based macroeconomics," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 1-37, March.
    14. Dan S. Rickman, 2010. "Modern Macroeconomics And Regional Economic Modeling," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 23-41, February.
    15. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Canova, Fabio & Sala, Luca, 2009. "Back to square one: Identification issues in DSGE models," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 431-449, May.
    2. Canova, Fabio & Paustian, Matthias, 2011. "Business cycle measurement with some theory," Journal of Monetary Economics, Elsevier, vol. 58(4), pages 345-361.
    3. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    4. Özer Karagedikli & Troy Matheson & Christie Smith & Shaun P. Vahey, 2010. "RBCs AND DSGEs: THE COMPUTATIONAL APPROACH TO BUSINESS CYCLE THEORY AND EVIDENCE," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 113-136, February.
    5. Carlo A. Favero, 2009. "The Econometrics of Monetary Policy: An Overview," Palgrave Macmillan Books, in: Terence C. Mills & Kerry Patterson (ed.), Palgrave Handbook of Econometrics, chapter 16, pages 821-850, Palgrave Macmillan.
    6. Consolo, Agostino & Favero, Carlo A. & Paccagnini, Alessia, 2009. "On the statistical identification of DSGE models," Journal of Econometrics, Elsevier, vol. 150(1), pages 99-115, May.
    7. Marco Del Negro & Frank Schorfheide, 2009. "Monetary Policy Analysis with Potentially Misspecified Models," American Economic Review, American Economic Association, vol. 99(4), pages 1415-1450, September.
    8. Anna Mikusheva, 2014. "Estimation of dynamic stochastic general equilibrium models (in Russian)," Quantile, Quantile, issue 12, pages 1-21, February.
    9. Bekiros Stelios & Paccagnini Alessia, 2015. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
    10. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    11. Bekiros, Stelios D. & Paccagnini, Alessia, 2014. "Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 298-323.
    12. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2010. "On the precision of Calvo parameter estimates in structural NKPC models," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1582-1595, September.
    13. Frank Schorfheide, 2008. "DSGE model-based estimation of the New Keynesian Phillips curve," Economic Quarterly, Federal Reserve Bank of Richmond, vol. 94(Fall), pages 397-433.
    14. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    15. Carlo A. Favero, 2007. "Model Evaluation in Macroeconometrics: from early empirical macroeconomic models to DSGE models," Working Papers 327, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    16. Dan S. Rickman, 2010. "Modern Macroeconomics And Regional Economic Modeling," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 23-41, February.
    17. Ana Beatriz Galvão & Liudas Giraitis & George Kapetanios & Katerina Petrova, 2015. "A Bayesian Local Likelihood Method for Modelling Parameter Time Variation in DSGE Models," Working Papers 770, Queen Mary University of London, School of Economics and Finance.
    18. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    19. Tovar, Camilo Ernesto, 2009. "DSGE Models and Central Banks," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-31.
    20. Alessia Paccagnini, 2012. "Comparing Hybrid DSGE Models," Working Papers 228, University of Milano-Bicocca, Department of Economics, revised Dec 2012.

    More about this item

    Keywords

    DSGE models; SVAR models; Identification; Invertibility; Misspecification; Small Samples.;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E50 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:1054. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.econ.upf.edu/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The email address of this maintainer does not seem to be valid anymore. Please ask the person in charge to update the entry or send us the correct address (email available below). General contact details of provider: http://www.econ.upf.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.