IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

The Theta Model in the Presence of a Unit Root Some new results on “optimal” theta forecasts

Listed author(s):
  • Dimitrios Thomakos
  • Konstantinos Nikolopoulos

We significantly extend earlier work by Assimakopoulos and Nikopoloulos (2000) and Hyndman and Billah (2003) on the properties and performance of the Theta model, and potentially explain its very good performance in the M3 forecasting competition. We derive a number of new theoretical results for theta forecasts when the data generating process contains both deterministic and stochastic trends. In particular (a) we show that using the standard theta forecasts coincides with the minimum mean-squared error forecast when the innovations are uncorrelated; (b) we provide, for the first time, an optimal value for the theta parameter, which coincides with the first order autocorrelation of the innovations, and thus provide a single optimal theta line; (c) we show that the optimal linear combination of two standard theta lines coincides with the single optimal theta line of (b). Under (b) and (c) we show that the optimal theta forecast function is identical with that of an ARIMA(1,1,0) model. Furthermore, we illustrate how the Theta model can be generalized to include local behavior in two different ways.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by University of Peloponnese, Department of Economics in its series Working Papers with number 0034.

in new window

Length: 22 pages
Date of creation: 2009
Handle: RePEc:uop:wpaper:0034
Contact details of provider: Phone: +30-2710-230128
Fax: +30-2710-230139
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:uop:wpaper:0034. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kleanthis Gatziolis)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.