IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Theta Model Forecasts for Financial Time Series: A Case Study in the S&P500

Listed author(s):
  • Konstantinos Nikolopoulos
  • Dimitrios Thomakos
  • Fotios Petropoulos
  • Vassilis Assimakopoulos

The Theta model created a lot of interest in academic circles due to its surprisingly good performance in the M3 forecasting competition. However, this interest was not followed up by other studies, with the exception of Hyndman and Billah in 2003. In addition, the Theta model performance has not been tested on a large dataset of non-demand forecasting series, nor its properties have been examined analytically for time series that are found in finance and economics. The present study presents some empirical results on the application of the Theta model for forecasting the evolution of the S&P500 index, both as an examination of its relative performance against the standard benchmarks, and as a motivation for further theoretical work. We use weekly data over a long period of 20 years and the Theta model is used alongside the benchmark models and rolling-origin forecasts are generated. The results are interesting since they show that the Theta model has performance that is either on par or better than the benchmarks.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by University of Peloponnese, Department of Economics in its series Working Papers with number 0033.

in new window

Length: 15 pages
Date of creation: 2009
Handle: RePEc:uop:wpaper:0033
Contact details of provider: Phone: +30-2710-230128
Fax: +30-2710-230139
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:uop:wpaper:0033. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kleanthis Gatziolis)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.