IDEAS home Printed from https://ideas.repec.org/p/uop/wpaper/0030.html
   My bibliography  Save this paper

Optimal Linear Filtering, Smoothing and Trend Extraction for m-period Differences of Processes with a Unit Root

Author

Listed:
  • Dimitrios Thomakos

Abstract

In this paper I consider the problem of optimal linear filtering, smoothing and trend extraction for m-period differences of processes with a unit root. Such processes arise naturally in economics and finance, in the form of rates of change (price inflation, economic growth, financial returns) and finding an appropriate smoother is thus of immediate practical interest. The filter and resulting smoother are based on the methodology of Singular Spectrum Analysis (SSA) and their form and properties are examined in detail. In particular, I find explicit representations for the asymptotic decomposition of the covariance matrix and show that the first two leading eigenvalues of the decomposition account for over 90% of the variability of the process. I examine the structure of the impulse and frequency response functions finding that the optimal filter has a “permanent” and a “transitory component” with the corresponding smoother being the sum of two such components. I also find explicit representations for the extrapolation coefficients that can be used in out-of-sample prediction. The methodology of the paper is illustrated with three short empirical applications using data on U.S. inflation and real GDP growth and data on the Euro/US dollar exchange rate. Finally, the paper contains a new technical result: I derive explicit representations for the filtering weights in the context of SSA for an arbitrary covariance matrix. This result allows one to examine specific effects of smoothing in any situation and has not appeared so far, to the best of my knowledge, in the related literature.

Suggested Citation

  • Dimitrios Thomakos, 2008. "Optimal Linear Filtering, Smoothing and Trend Extraction for m-period Differences of Processes with a Unit Root," Working Papers 0030, University of Peloponnese, Department of Economics.
  • Handle: RePEc:uop:wpaper:0030
    as

    Download full text from publisher

    File URL: http://econ.uop.gr/~econ/RePEc/pdf/optimal_smoothing_differences.pdf
    Download Restriction: no

    More about this item

    Keywords

    core inflation; business cycles; differences; euro; linear filtering; singular spectrum analysis; smoothing; trading strategies; trend extraction and prediction; unit root.;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uop:wpaper:0030. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kleanthis Gatziolis). General contact details of provider: http://edirc.repec.org/data/depelgr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.