IDEAS home Printed from https://ideas.repec.org/p/tiu/tiutis/94f1daba-d4c5-4b91-a20f-4ae71db162a5.html
   My bibliography  Save this paper

Symmetry reduction in convex optimization with applications in combinatorics

Author

Listed:
  • Brosch, Daniel

    (Tilburg University, School of Economics and Management)

Abstract

No abstract is available for this item.

Suggested Citation

  • Brosch, Daniel, 2022. "Symmetry reduction in convex optimization with applications in combinatorics," Other publications TiSEM 94f1daba-d4c5-4b91-a20f-4, Tilburg University, School of Economics and Management.
  • Handle: RePEc:tiu:tiutis:94f1daba-d4c5-4b91-a20f-4ae71db162a5
    as

    Download full text from publisher

    File URL: https://repository.tilburguniversity.edu/bitstreams/9a163462-6fc1-4021-8143-0e5024354a77/download
    Download Restriction: no

    File URL: https://repository.tilburguniversity.edu/bitstreams/d729fe8b-f7f0-484f-a93e-7989cb805665/download
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. W. Hadley & F. Rendl & H. Wolkowicz, 1992. "A New Lower Bound Via Projection for the Quadratic Assignment Problem," Mathematics of Operations Research, INFORMS, vol. 17(3), pages 727-739, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kirschner, Felix, 2023. "Conic optimization with applications in finance and approximation theory," Other publications TiSEM e9bef4a5-ee46-45be-90d7-9, Tilburg University, School of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ting Pong & Hao Sun & Ningchuan Wang & Henry Wolkowicz, 2016. "Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 333-364, March.
    2. Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.
    3. Zvi Drezner & Peter Hahn & Éeric Taillard, 2005. "Recent Advances for the Quadratic Assignment Problem with Special Emphasis on Instances that are Difficult for Meta-Heuristic Methods," Annals of Operations Research, Springer, vol. 139(1), pages 65-94, October.
    4. Yong Xia & Wajeb Gharibi, 2015. "On improving convex quadratic programming relaxation for the quadratic assignment problem," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 647-667, October.
    5. Mouhamadou A. M. T. Baldé & Serigne Gueye & Babacar M. Ndiaye, 2021. "A greedy evolutionary hybridization algorithm for the optimal network and quadratic assignment problem," Operational Research, Springer, vol. 21(3), pages 1663-1690, September.
    6. Yichuan Ding & Henry Wolkowicz, 2009. "A Low-Dimensional Semidefinite Relaxation for the Quadratic Assignment Problem," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 1008-1022, November.
    7. Mădălina M. Drugan, 2015. "Generating QAP instances with known optimum solution and additively decomposable cost function," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 1138-1172, November.
    8. Qing Zhao & Stefan E. Karisch & Franz Rendl & Henry Wolkowicz, 1998. "Semidefinite Programming Relaxations for the Quadratic Assignment Problem," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 71-109, March.
    9. Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
    10. Wolkowicz, Henry, 2002. "A note on lack of strong duality for quadratic problems with orthogonal constraints," European Journal of Operational Research, Elsevier, vol. 143(2), pages 356-364, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiutis:94f1daba-d4c5-4b91-a20f-4ae71db162a5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: https://www.tilburguniversity.edu/about/schools/economics-and-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.