IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20000039.html
   My bibliography  Save this paper

Exact Test Statistics and Distributions of Maximum Likelihood Estimators that result from Orthogonal Parameters

Author

Listed:
  • Frank R. Kleibergen

    (University of Amsterdam)

Abstract

We show that three convenient statistical properties that are known to hold forthe linear model with normal distributed errors that: (i.) when the variance is known, the likelihood based test statistics, Wald, Likelihood Ratio andScore or Lagrange Multiplier, coincide, (ii.) when the variance is unknown,exact test statistics exist, (iii) the density of the maximum likelihood estimator (mle) of the parameters of a nested model equals the conditional density of the mle of the parameters of an encompassing model, also apply to a larger class of models. This class contains models that are nested in a linear model and allow for orthogonal parameters to span the difference with theencompassing linear model. Next to linear models, an important set of modelsthat belongs to this class are the reduced rank regression models. An example of a reduced rank regression model is the instrumental variables regression model. We use the three convenient statistical properties to conductexact inference in the instrumental variables regression model and use them to construct both the density of the limited information maximum likelihood estimator and novel exact statistics to test instrument validity, overidentification and hypothezes on all or subsets of the structural form parameters.

Suggested Citation

  • Frank R. Kleibergen, 2000. "Exact Test Statistics and Distributions of Maximum Likelihood Estimators that result from Orthogonal Parameters," Tinbergen Institute Discussion Papers 00-039/4, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20000039
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/00039.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kleibergen, Frank & Zivot, Eric, 2003. "Bayesian and classical approaches to instrumental variable regression," Journal of Econometrics, Elsevier, vol. 114(1), pages 29-72, May.
    2. Hoogerheide, L.F. & van Dijk, H.K., 2006. "A reconsideration of the Angrist-Krueger analysis on returns to education," Econometric Institute Research Papers EI 2006-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20000039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.