IDEAS home Printed from https://ideas.repec.org/p/tcb/wpaper/2509.html
   My bibliography  Save this paper

Forecasting Budgetary Items in Türkiye Using Deep Learning

Author

Listed:
  • Altug Aydemir
  • Cem Cebi

Abstract

This study aims at forecasting the future behavior of budget variables, using Artificial Neural Network (ANN) and Deep Neural Network (DNN) techniques for Türkiye. Particularly, we focus on budget expenditures, tax revenues and their main components. Annual data were used and divided into two sub-periods: a training set (2002-2019) and a test set (2020-2022). Each fiscal item is estimated using relevant explanatory variables selected based on economic theory. We achieved good forecasting performance for main budget items using ANN and DNN methodologies. We found that most of the Mean Absolute Error (MAE) values fell within the acceptable range, an indicator of good prediction performance. Second, we see that the MAE values for public expenditures are lower than taxes. Third, estimating total tax revenues (aggregate data) performs better compared to subcomponents of taxes (disaggregated data). The opposite is the case for public expenditures.

Suggested Citation

  • Altug Aydemir & Cem Cebi, 2025. "Forecasting Budgetary Items in Türkiye Using Deep Learning," Working Papers 2509, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
  • Handle: RePEc:tcb:wpaper:2509
    as

    Download full text from publisher

    File URL: https://www.tcmb.gov.tr/wps/wcm/connect/a6270dd5-9dc5-43aa-96c3-6483a8c59634/WP2509.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE-a6270dd5-9dc5-43aa-96c3-6483a8c59634-pws1TAP
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
    2. Radulescu Magdalena & Banica Logica & Tatiana Zamfiroiu, 2015. "Forecasting public expenditure by using feed-forward neural networks," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 28(1), pages 668-686, January.
    3. Ahmad Jafari Samimi, 2011. "Forecasting Government Size in Iran Using Artificial Neural Network," Journal of Economics and Behavioral Studies, AMH International, vol. 3(5), pages 274-278.
    4. Fioramanti, Marco, 2008. "Predicting sovereign debt crises using artificial neural networks: A comparative approach," Journal of Financial Stability, Elsevier, vol. 4(2), pages 149-164, June.
    5. Zexin Hu & Yiqi Zhao & Matloob Khushi, 2021. "A Survey of Forex and Stock Price Prediction Using Deep Learning," Papers 2103.09750, arXiv.org.
    6. Jian Huang & Junyi Chai & Stella Cho, 2020. "Deep learning in finance and banking: A literature review and classification," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-24, December.
    7. Cheng-Hong Yang & Tshimologo Molefyane & Yu-Da Lin, 2023. "The Forecasting of a Leading Country’s Government Expenditure Using a Recurrent Neural Network with a Gated Recurrent Unit," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
    8. Hossein Hassani & Xu Huang & Emmanuel Silva & Mansi Ghodsi, 2020. "Deep Learning and Implementations in Banking," Annals of Data Science, Springer, vol. 7(3), pages 433-446, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amin Aminimehr & Ali Raoofi & Akbar Aminimehr & Amirhossein Aminimehr, 2022. "A Comprehensive Study of Market Prediction from Efficient Market Hypothesis up to Late Intelligent Market Prediction Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 781-815, August.
    2. Tölö, Eero, 2019. "Predicting systemic financial crises with recurrent neural networks," Bank of Finland Research Discussion Papers 14/2019, Bank of Finland.
    3. Hongcheng Ding & Xuanze Zhao & Ruiting Deng & Shamsul Nahar Abdullah & Deshinta Arrova Dewi, 2024. "EUR-USD Exchange Rate Forecasting Based on Information Fusion with Large Language Models and Deep Learning Methods," Papers 2408.13214, arXiv.org, revised Jun 2025.
    4. Patrycja Klusak & Matthew Agarwala & Matt Burke & Moritz Kraemer & Kamiar Mohaddes, 2023. "Rising Temperatures, Falling Ratings: The Effect of Climate Change on Sovereign Creditworthiness," Management Science, INFORMS, vol. 69(12), pages 7468-7491, December.
    5. Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    6. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    7. Arazmuradov, Annageldy, 2016. "Assessing sovereign debt default by efficiency," The Journal of Economic Asymmetries, Elsevier, vol. 13(C), pages 100-113.
    8. Pedro Reis & Ana Paula Serra & Jo~ao Gama, 2025. "The Role of Deep Learning in Financial Asset Management: A Systematic Review," Papers 2503.01591, arXiv.org.
    9. Jorge M. Uribe, 2023. ""Fiscal crises and climate change"," IREA Working Papers 202303, University of Barcelona, Research Institute of Applied Economics, revised Feb 2023.
    10. Francesca Caselli & Matilde Faralli & Paolo Manasse & Ugo Panizza, 2021. "On the Benefits of Repaying," IMF Working Papers 2021/233, International Monetary Fund.
    11. Ghulam, Yaseen, 2025. "A further examination of sovereign domestic and external debt defaults," The North American Journal of Economics and Finance, Elsevier, vol. 76(C).
    12. repec:zbw:bofrdp:2019_014 is not listed on IDEAS
    13. Peter Sarlin & Dorina Marghescu, 2011. "Visual predictions of currency crises using self‐organizing maps," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(1), pages 15-38, January.
    14. Jian Guo & Saizhuo Wang & Lionel M. Ni & Heung-Yeung Shum, 2022. "Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence," Papers 2301.04020, arXiv.org.
    15. Barbara Jarmulska, 2022. "Random forest versus logit models: Which offers better early warning of fiscal stress?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 455-490, April.
    16. Wang, Yuejing & Ye, Wuyi & Jiang, Ying & Liu, Xiaoquan, 2024. "Volatility prediction for the energy sector with economic determinants: Evidence from a hybrid model," International Review of Financial Analysis, Elsevier, vol. 92(C).
    17. Fuat SEKMEN & Murat KURKCU, 2014. "An Early Warning System for Turkey: The Forecasting Of Economic Crisis by Using the Artificial Neural Networks," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 4(4), pages 529-543, April.
    18. Mahsa Tavakoli & Rohitash Chandra & Fengrui Tian & Cristi'an Bravo, 2023. "Multi-Modal Deep Learning for Credit Rating Prediction Using Text and Numerical Data Streams," Papers 2304.10740, arXiv.org, revised Nov 2024.
    19. Sarlin, Peter & Peltonen, Tuomas A., 2011. "Mapping the state of financial stability," BOFIT Discussion Papers 18/2011, Bank of Finland Institute for Emerging Economies (BOFIT).
    20. Yuze Lu & Hailong Zhang & Qiwen Guo, 2023. "Stock and market index prediction using Informer network," Papers 2305.14382, arXiv.org.
    21. Liping Wang & Jiawei Li & Lifan Zhao & Zhizhuo Kou & Xiaohan Wang & Xinyi Zhu & Hao Wang & Yanyan Shen & Lei Chen, 2023. "Methods for Acquiring and Incorporating Knowledge into Stock Price Prediction: A Survey," Papers 2308.04947, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • H20 - Public Economics - - Taxation, Subsidies, and Revenue - - - General
    • H50 - Public Economics - - National Government Expenditures and Related Policies - - - General
    • H68 - Public Economics - - National Budget, Deficit, and Debt - - - Forecasts of Budgets, Deficits, and Debt

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tcb:wpaper:2509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sermet Pekin or Ilker Cakar or the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tcmgvtr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.