IDEAS home Printed from https://ideas.repec.org/p/swe/wpaper/2012-47.html
   My bibliography  Save this paper

The confounding effects of consumer heterogeneity on model-based inference of attribute non-attendance

Author

Listed:
  • Hong il Yoo

    () (University of New South Wales)

Abstract

Several empirical studies conclude that a majority of economic agents ignore some of observed product attributes when choosing among discrete alternatives. Many of these ndings are based on latent class logit with partially constrained support points wherein the share of each point is interpreted as the probability of ignoring particular attribute(s). We note that because the logit kernel is mixed over these points to approximate unmodeled interpersonal taste variation during the estimation stage, the interpretation of estimated shares is necessarily ambiguous. Using simulated examples, we explain why common forms of unobserved consumer heterogeneity can be confounded with attribute non-attendance.

Suggested Citation

  • Hong il Yoo, 2012. "The confounding effects of consumer heterogeneity on model-based inference of attribute non-attendance," Discussion Papers 2012-47, School of Economics, The University of New South Wales.
  • Handle: RePEc:swe:wpaper:2012-47
    as

    Download full text from publisher

    File URL: http://research.economics.unsw.edu.au/RePEc/papers/2012-47.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Yoo, Hong Il & Doiron, Denise, 2013. "The use of alternative preference elicitation methods in complex discrete choice experiments," Journal of Health Economics, Elsevier, vol. 32(6), pages 1166-1179.
    2. Riccardo Scarpa & Sandra Notaro & Jordan Louviere & Roberta Raffaelli, 2010. "Exploring Scale Effects of Best/Worst Rank Ordered Choice Data to Estimate Benefits of Tourism in Alpine Grazing Commons," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 809-824.
    3. Joel Huber and Kenneth Train., 2000. "On the Similarity of Classical and Bayesian Estimates of Individual Mean Partworths," Economics Working Papers E00-289, University of California at Berkeley.
    4. Layton, David F., 2000. "Random Coefficient Models for Stated Preference Surveys," Journal of Environmental Economics and Management, Elsevier, vol. 40(1), pages 21-36, July.
    5. Siikamaki, Juha & Layton, David F., 2007. "Discrete choice survey experiments: A comparison using flexible methods," Journal of Environmental Economics and Management, Elsevier, vol. 53(1), pages 122-139, January.
    6. John Calfee & Clifford Winston & Randolph Stempski, 2001. "Econometric Issues In Estimating Consumer Preferences From Stated Preference Data: A Case Study Of The Value Of Automobile Travel Time," The Review of Economics and Statistics, MIT Press, vol. 83(4), pages 699-707, November.
    7. Kenneth E. Train & Clifford Winston, 2007. "Vehicle Choice Behavior And The Declining Market Share Of U.S. Automakers," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1469-1496, November.
    8. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, December.
    9. Alejandro Caparrós & José L. Oviedo & Pablo Campos, 2008. "Would You Choose Your Preferred Option? Comparing Choice and Recoded Ranking Experiments," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(3), pages 843-855.
    10. Denzil G. Fiebig & Michael P. Keane & Jordan Louviere & Nada Wasi, 2010. "The Generalized Multinomial Logit Model: Accounting for Scale and Coefficient Heterogeneity," Marketing Science, INFORMS, vol. 29(3), pages 393-421, 05-06.
    11. Ben-Akiva, Moshe & Morikawa, Takayuki & Shiroishi, Fumiaki, 1992. "Analysis of the reliability of preference ranking data," Journal of Business Research, Elsevier, vol. 24(2), pages 149-164, March.
    12. J. S. Cramer, 2007. "Robustness of Logit Analysis: Unobserved Heterogeneity and Mis-specified Disturbances," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(4), pages 545-555, August.
    13. Beggs, S. & Cardell, S. & Hausman, J., 1981. "Assessing the potential demand for electric cars," Journal of Econometrics, Elsevier, vol. 17(1), pages 1-19, September.
    14. Michael Keane & Nada Wasi, 2013. "Comparing Alternative Models Of Heterogeneity In Consumer Choice Behavior," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(6), pages 1018-1045, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    attribute non-attendance; gmnl; latent class; consumer heterogeneity; mixed logit; information processing rule;

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:swe:wpaper:2012-47. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Hongyi Li). General contact details of provider: http://edirc.repec.org/data/senswau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.