IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Tobit or OLS? An Empirical Evaluation Under Different Diary Window Lengths

Listed author(s):
  • Jennifer Foster


    (School of Economics, The University of New South Wales)

  • Charlene Kalenkoski


    (Department of Economics, Ohio University)

Time use researchers frequently debate whether it is more appropriate to fit censored regression (Tobit) models using maximum likelihood estimation or linear models using ordinary least squares (OLS) to explain individuals’ allocations of time to different activities as recorded in time-diary data. One side argues that estimation of Tobit models addresses the significant censoring (i.e., large numbers of zeros) typically found in time-diary data and that OLS estimation leads to biased and inconsistent estimates. The opposing side argues that optimization occurs over a longer period than that covered by the typical time diary, and thus that reported zeros represent measurement error rather than true non-participation in the activity, in which case OLS is preferred. We use the Australian Time Use Surveys, which record information for two consecutive diary days, to estimate censored and linear versions of a parental child care model for both 24-hour and 48-hour windows of observation in order to determine the empirical consequences of estimation technique and diary length. We find a moderate amount of measurement error when we use the 24-hour window compared to the 48-hour window, but a large number of zeros in the shorter window remain zeroes when we double the window length. Most of the qualitative conclusions we draw are similar for the two windows of observation and the two estimation methods, although there are some slight differences in the magnitudes and statistical significance of the estimates. Importantly, Tobit estimates appear to be more sensitive to window length than OLS estimates.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by School of Economics, The University of New South Wales in its series Discussion Papers with number 2010-01.

in new window

Length: 13 pages
Date of creation: Jan 2010
Handle: RePEc:swe:wpaper:2010-01
Contact details of provider: Postal:
Australian School of Business Building, Sydney 2052

Phone: (+61)-2-9385-3380
Fax: +61)-2- 9313- 6337
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:swe:wpaper:2010-01. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Hongyi Li)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.