IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Tobit or OLS? An empirical evaluation under different diary window lengths

Listed author(s):
  • Gigi Foster
  • Charlene M. Kalenkoski

Researchers analysing time-use data often estimate limited dependent variable models because time spent must be nonnegative and cannot be more than the total amount of time in a given observation period. While the traditional empirical technique applied to such cases is maximum likelihood estimation of a Tobit (censored regression) model, recent debate has questioned whether linear models estimated via Ordinary Least Squares (OLS) are preferable. On the one hand, Tobit models are deemed necessary to address the significant censoring (i.e. large numbers of zeroes) typically found in time-use data, in the face of which OLS estimators would be biased and inconsistent. Yet, optimization occurs over a longer period than that covered by the typical time diary (often a day), and thus some argue that reported zeroes represent a measurement problem rather than true nonparticipation in the activity, in which case OLS would be preferred. We provide direct empirical evidence on this question using the Australian Time Use Surveys, which record time-use information for two consecutive diary days, by estimating censored and linear versions of a parental child care model for both 24-hour and 48-hour windows of observation in order to determine the empirical consequences of estimation technique and diary length.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Applied Economics.

Volume (Year): 45 (2013)
Issue (Month): 20 (July)
Pages: 2994-3010

in new window

Handle: RePEc:taf:applec:v:45:y:2013:i:20:p:2994-3010
DOI: 10.1080/00036846.2012.690852
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:45:y:2013:i:20:p:2994-3010. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.