IDEAS home Printed from
   My bibliography  Save this article

Tobit or OLS? An empirical evaluation under different diary window lengths


  • Gigi Foster
  • Charlene M. Kalenkoski


Researchers analysing time-use data often estimate limited dependent variable models because time spent must be nonnegative and cannot be more than the total amount of time in a given observation period. While the traditional empirical technique applied to such cases is maximum likelihood estimation of a Tobit (censored regression) model, recent debate has questioned whether linear models estimated via Ordinary Least Squares (OLS) are preferable. On the one hand, Tobit models are deemed necessary to address the significant censoring (i.e. large numbers of zeroes) typically found in time-use data, in the face of which OLS estimators would be biased and inconsistent. Yet, optimization occurs over a longer period than that covered by the typical time diary (often a day), and thus some argue that reported zeroes represent a measurement problem rather than true nonparticipation in the activity, in which case OLS would be preferred. We provide direct empirical evidence on this question using the Australian Time Use Surveys, which record time-use information for two consecutive diary days, by estimating censored and linear versions of a parental child care model for both 24-hour and 48-hour windows of observation in order to determine the empirical consequences of estimation technique and diary length.

Suggested Citation

  • Gigi Foster & Charlene M. Kalenkoski, 2013. "Tobit or OLS? An empirical evaluation under different diary window lengths," Applied Economics, Taylor & Francis Journals, vol. 45(20), pages 2994-3010, July.
  • Handle: RePEc:taf:applec:v:45:y:2013:i:20:p:2994-3010
    DOI: 10.1080/00036846.2012.690852

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    More about this item

    JEL classification:

    • C34 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Truncated and Censored Models; Switching Regression Models
    • J13 - Labor and Demographic Economics - - Demographic Economics - - - Fertility; Family Planning; Child Care; Children; Youth


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:45:y:2013:i:20:p:2994-3010. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.