IDEAS home Printed from https://ideas.repec.org/p/scp/wpaper/05-23.html
   My bibliography  Save this paper

Modified Two Stage Least Squares Estimators for the Estimation of a Structural Vector Autoregressive Integrated Process

Author

Listed:
  • Cheng Hsiao
  • Siyan Wang

Abstract

We consider the estimation of a structural vector autoregressive model of nonstationary and possibly cointegrated variables without the prior knowledge of unit roots or rank of cointegration. We propose two modified two stage least squares estimators that are consistent and have limiting distributions that are either normal or mixed normal. Limited Monte Carlo studies are also conducted to evaluate their finite sample properties.

Suggested Citation

  • Cheng Hsiao & Siyan Wang, 2005. "Modified Two Stage Least Squares Estimators for the Estimation of a Structural Vector Autoregressive Integrated Process," IEPR Working Papers 05.23, Institute of Economic Policy Research (IEPR).
  • Handle: RePEc:scp:wpaper:05-23
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cheng Hsiao, 1997. "Statistical Properties of the Two-Stage Least Squares Estimator Under Cointegration," Review of Economic Studies, Oxford University Press, vol. 64(3), pages 385-398.
    2. Toda, Hiro Y & Phillips, Peter C B, 1993. "Vector Autoregressions and Causality," Econometrica, Econometric Society, vol. 61(6), pages 1367-1393, November.
    3. Yamada, Hiroshi & Toda, Hiro Y., 1998. "Inference in possibly integrated vector autoregressive models: some finite sample evidence," Journal of Econometrics, Elsevier, vol. 86(1), pages 55-95, June.
    4. Phillips, Peter C B, 1995. "Fully Modified Least Squares and Vector Autoregression," Econometrica, Econometric Society, vol. 63(5), pages 1023-1078, September.
    5. N/A, 1969. "Gaming," Journal of Conflict Resolution, Peace Science Society (International), vol. 13(1), pages 102-102, March.
    6. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    7. Hsiao, Cheng, 2001. "Identification And Dichotomization Of Long- And Short-Run Relations Of Cointegrated Vector Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 17(05), pages 889-912, October.
    8. King, Robert G. & Plosser, Charles I. & Stock, James H. & Watson, Mark W., 1991. "Stochastic Trends and Economic Fluctuations," American Economic Review, American Economic Association, vol. 81(4), pages 819-840, September.
    9. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    10. N/A, 1969. "Gaming," Journal of Conflict Resolution, Peace Science Society (International), vol. 13(4), pages 485-486, December.
    11. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    12. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Structural vector autoregression; Unit root; Cointegration; Asymptotic properties; Hypothesis testing;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scp:wpaper:05-23. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/ieuscus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.