IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A Reliable Technique for Accurately Computing Unconditional Variances

  • Gary S. Anderson

    (Board of Governors, Federal Reserve System)

This paper provides formulae for computing perturbation method approximations of unconditional variances of variables in nonlinear DSGE models. Spurious higher order terms that creep into multi-step ahead forecasts can produce explosive time paths frustrating traditional approaches to estimating unconditional covariances. They have developed a pruning solution to preempt this specious explosive behavior. This paper outlines a more direct approach to approximating unconditional covariances. By, in effect, explicitly including long forecast of powers of endogenous variables among the DSGE model equations, one can obtain perturbation method approximations for the covariances along with the other Taylor series approximation equations. Explicit formulae for computing perturbation solutions for models with multiple leads makes including such long horizon forecasts computational feasible. Furthermore, in this formulation, the coefficients associated with the initial conditions for the state variables provide useful diagnostic information about the accuracy of the unconditional variance approximation. This paper (i) applies the technique to linear models, where explicit formulae for unconditional covariances are available, to motivate and validate the performance of the technique. (ii) contrasts and compares the accuracy, computational, efficiency and tractability for this method and the pruning method.

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2006 with number 291.

as
in new window

Length:
Date of creation: 04 Jul 2006
Date of revision:
Handle: RePEc:sce:scecfa:291
Contact details of provider: Web page: http://comp-econ.org/Email:


More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:sce:scecfa:291. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.