IDEAS home Printed from
   My bibliography  Save this paper

Price level targeting and adaptive learning


  • Vitor Gaspar

    (David Vestin)


This paper examines the implications of adaptive learning in the New Keynesian benchmark model extended with inflation indexation to capture inflation persistence. First, we show that the price level will be stationary and follow an AR(2) process. Next, we study under which circumstances the rational expectations equilibrium will be learnable. Finally, we examine the implications of constant gain learning for the average value of the central bank loss function. Our main finding is that the optimal rule under commitment turns out to be very robust, delivering good performance under constant gains learning

Suggested Citation

  • Vitor Gaspar, 2006. "Price level targeting and adaptive learning," Computing in Economics and Finance 2006 195, Society for Computational Economics.
  • Handle: RePEc:sce:scecfa:195

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    1. Das, Sanjiv R., 2002. "The surprise element: jumps in interest rates," Journal of Econometrics, Elsevier, vol. 106(1), pages 27-65, January.
    2. Dittmann, Ingolf & Granger, Clive W. J., 2002. "Properties of nonlinear transformations of fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 110(2), pages 113-133, October.
    3. Nielsen, Morten Ørregaard, 2010. "Nonparametric cointegration analysis of fractional systems with unknown integration orders," Journal of Econometrics, Elsevier, vol. 155(2), pages 170-187, April.
    4. Hao Zhou, 2001. "Jump-diffusion term structure and Ito conditional moment generator," Finance and Economics Discussion Series 2001-28, Board of Governors of the Federal Reserve System (U.S.).
    5. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    6. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    7. Rimas Norvaisa, 2000. "Modelling of stock price changes: A real analysis approach," Finance and Stochastics, Springer, vol. 4(3), pages 343-369.
    8. Conley, Timothy G, et al, 1997. "Short-Term Interest Rates as Subordinated Diffusions," Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 525-577.
    9. Crato, Nuno & Rothman, Philip, 1994. "Fractional integration analysis of long-run behavior for US macroeconomic time series," Economics Letters, Elsevier, vol. 45(3), pages 287-291.
    10. Ang, Andrew & Bekaert, Geert, 2002. "Regime Switches in Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 163-182, April.
    11. Pfann, Gerard A. & Schotman, Peter C. & Tschernig, Rolf, 1996. "Nonlinear interest rate dynamics and implications for the term structure," Journal of Econometrics, Elsevier, vol. 74(1), pages 149-176, September.
    12. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    13. David K. Backus & Stanley E. Zin, 1993. "Long-memory inflation uncertainty: evidence from the term structure of interest rates," Proceedings, Federal Reserve Bank of Cleveland, pages 681-708.
    14. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    15. Duan, Jin-Chuan & Simonato, Jean-Guy, 1999. "Estimating and Testing Exponential-Affine Term Structure Models by Kalman Filter," Review of Quantitative Finance and Accounting, Springer, vol. 13(2), pages 111-135, September.
    16. Comte, F. & Renault, E., 1996. "Long memory continuous time models," Journal of Econometrics, Elsevier, vol. 73(1), pages 101-149, July.
    17. Michael Johannes, 2004. "The Statistical and Economic Role of Jumps in Continuous-Time Interest Rate Models," Journal of Finance, American Finance Association, vol. 59(1), pages 227-260, February.
    18. Tkacz Greg, 2001. "Estimating the Fractional Order of Integration of Interest Rates Using a Wavelet OLS Estimator," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(1), pages 1-15, April.
    19. Jefferson Duarte, 2004. "Evaluating an Alternative Risk Preference in Affine Term Structure Models," Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 379-404.
    20. Shea, Gary S, 1991. "Uncertainty and Implied Variance Bounds in Long-Memory Models of the Interest Rate Term Structure," Empirical Economics, Springer, vol. 16(3), pages 287-312.
    21. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    22. repec:bla:jfnres:v:22:y:1999:i:1:p:107-130 is not listed on IDEAS
    23. Emma Iglesias & Garry Phillips, 2005. "Analysing one-month Euro-market interest rates by fractionally integrated models," Applied Financial Economics, Taylor & Francis Journals, vol. 15(2), pages 95-106.
    24. Fred Espen Benth, 2003. "On arbitrage-free pricing of weather derivatives based on fractional Brownian motion," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(4), pages 303-324.
    25. Dong-Hyun Ahn & Robert F. Dittmar, 2002. "Quadratic Term Structure Models: Theory and Evidence," Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 243-288, March.
    26. Morten Ørregaard Nielsen & Per Frederiksen, 2008. "Fully Modified Narrow-Band Least Squares Estimation of Stationary Fractional Cointegration," Working Papers 1171, Queen's University, Department of Economics.
    27. Ahn, Dong-Hyun & Gao, Bin, 1999. "A Parametric Nonlinear Model of Term Structure Dynamics," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 721-762.
    28. Geyer, Alois L J & Pichler, Stefan, 1999. "A State-Space Approach to Estimate and Test Multifactor Cox-Ingersoll-Ross Models of the Term Structure," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 22(1), pages 107-130, Spring.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Orphanides, Athanasios & Williams, John C., 2008. "Learning, expectations formation, and the pitfalls of optimal control monetary policy," Journal of Monetary Economics, Elsevier, vol. 55(Supplemen), pages 80-96, October.
    2. George W. Evans & Seppo Honkapohja, 2009. "Expectations, Learning and Monetary Policy: An Overview of Recent Research," Central Banking, Analysis, and Economic Policies Book Series,in: Klaus Schmidt-Hebbel & Carl E. Walsh & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Series (ed.), Monetary Policy under Uncertainty and Learning, edition 1, volume 13, chapter 2, pages 027-076 Central Bank of Chile.
    3. Maritta Paloviita, 2008. "Comparing alternative Phillips curve specifications: European results with survey-based expectations," Applied Economics, Taylor & Francis Journals, vol. 40(17), pages 2259-2270.

    More about this item


    Adaptive learningn; price level targeting;

    JEL classification:

    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecfa:195. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.