IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

The Curse of Dimensionality in Solving, Estimating and Comparing Non-Linear Rational Expectation Models

Listed author(s):
  • Viktor Winschel


    (Economics University Mannheim)

Registered author(s):

    This paper presents an attempt to solve and estimate a structural dynamic non-linear rational expectation model. The main contribution of this paper is to explore the Smolyak operator for numerical approximation and integration in a generic model class which do not suffer exponentially but only polynomially from the curse of dimensionality. The approximation of the policy function is done by Smolyak Chebyshev polynomials in the first order conditions f(s,x,Eh(s,x,e,s',x'))=0 with rational expectations about next period state s' and policy x'. Start values are generated by a linear approximation. The solution $x(s)$ forms a non-linear state space model analyzed by the unscented and particle filter. The rational expectation integration is done with an adaptive Smolyak scheme. For the estimation of posterior densities of structural parameters I propose a genetic extension of the Metropolis-Hastings algorithm to overcome the covariance choice problem in the random walk variant. Linearization is finally compared to the non-linear solution by a Bayesian model choice criterium for non-nested models

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below under "Related research" whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2005 with number 465.

    in new window

    Date of creation: 11 Nov 2005
    Handle: RePEc:sce:scecf5:465
    Contact details of provider: Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:465. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.