IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Option pricing with sparse grids

Listed author(s):
  • Thomas Mertens

We investigate the suitability of sparse grids for solving high-dimensional option pricing and interest rate models numerically. Starting from the partial differential equation, we try to - at least partially - break the curse of dimensionality through sparse grids which will result from a multi-level splitting of the solution. We make use of an adaptive algorithm in spacetime exploiting the smoothness of the solution. In order to compute sensitivities (the so-calles "greeks"), we avail of interpolets as a smooth basis function leading to faster convergence. Finite differences allow us to adjust the order of consistency. The code providing the results of the paper was designed for fast solving making use of an efficient preconditioner and parallelization. The specific choice of boundary conditions is crucial to obtaining good approximations to the true solution. Different types will be compared here. Our findings suggest the usage of locally full grids in order to approximate the singularity in the initial data. However, this modification does not lead to a deterioration of the speed of convergence which will yield a rate of 4 for the solution. That means the Gamma sensitivity converges as a second derivative at a rate of 2

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2005 with number 449.

in new window

Date of creation: 11 Nov 2005
Handle: RePEc:sce:scecf5:449
Contact details of provider: Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:449. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.