IDEAS home Printed from
   My bibliography  Save this paper

Estimating the Deep Parameters of RBC Model with Learning


  • Stefano Eusepi
  • Stefania D'Amico


We formulate and estimate a RBC model with structural changes and with bounded rationality, where the economic agents have to learn about the former. This paper investigates whether the agents’ learning process can generate business cycles fluctuations which are empirically plausible. This in turn implies the estimation of the structural parameters of the model. The estimation is carried out using indirect inference methods that allow to deal with the nonlinearity generated by the learning process and do not require the estimation of the agents’ initial beliefs. Furthermore, given that the asymptotic behavior of the agents’ beliefs depends only on the deep parameters of the model, our econometric approach does not require the estimation of extra free parameters, compared with the RBC model under rational expectations. We find that private agents’ expectations have a significant role in explaining business cycle fluctuations.

Suggested Citation

  • Stefano Eusepi & Stefania D'Amico, 2005. "Estimating the Deep Parameters of RBC Model with Learning," Computing in Economics and Finance 2005 404, Society for Computational Economics.
  • Handle: RePEc:sce:scecf5:404

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item


    RBC Model; Bounded Rationality; Simulated quasi-maximum likelihood;

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:404. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.